Models
LUMEBaseModel
Bases: BaseModel
, ABC
Abstract base class for models using lume-model variables.
Inheriting classes must define the evaluate method and variable names must be unique (respectively). Models build using this framework will be compatible with the lume-epics EPICS server and associated tools.
Attributes:
Name | Type | Description |
---|---|---|
input_variables |
list[SerializeAsAny[InputVariable]]
|
List defining the input variables and their order. |
output_variables |
list[SerializeAsAny[OutputVariable]]
|
List defining the output variables and their order. |
Source code in lume_model/base.py
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
|
__init__(*args, **kwargs)
Initializes LUMEBaseModel.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
*args
|
Accepts a single argument which is the model configuration as dictionary, YAML or JSON formatted string or file path. |
()
|
|
**kwargs
|
See class attributes. |
{}
|
Source code in lume_model/base.py
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
|
dump(file, base_key='', save_models=True)
Returns and optionally saves YAML formatted string defining the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
file
|
Union[str, PathLike]
|
File path to which the YAML formatted string and corresponding files are saved. |
required |
base_key
|
str
|
Base key for serialization. |
''
|
save_models
|
bool
|
Determines whether models are saved to file. |
True
|
Source code in lume_model/base.py
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
|
yaml(base_key='', file_prefix='', save_models=False)
Serializes the object and returns a YAML formatted string defining the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
base_key
|
str
|
Base key for serialization. |
''
|
file_prefix
|
str
|
Prefix for generated filenames. |
''
|
save_models
|
bool
|
Determines whether models are saved to file. |
False
|
Returns:
Type | Description |
---|---|
str
|
YAML formatted string defining the model. |
Source code in lume_model/base.py
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
|
TorchModel
Bases: LUMEBaseModel
LUME-model class for torch models.
By default, the models are assumed to be fixed, so all gradient computation is deactivated and the model and transformers are put in evaluation mode.
Attributes:
Name | Type | Description |
---|---|---|
model |
Module
|
The torch base model. |
input_variables |
Module
|
List defining the input variables and their order. |
output_variables |
Module
|
List defining the output variables and their order. |
input_transformers |
list[ReversibleInputTransform]
|
List of transformer objects to apply to input before passing to model. |
output_transformers |
list[ReversibleInputTransform]
|
List of transformer objects to apply to output of model. |
output_format |
str
|
Determines format of outputs: "tensor", "variable" or "raw". |
device |
Union[device, str]
|
Device on which the model will be evaluated. Defaults to "cpu". |
fixed_model |
bool
|
If true, the model and transformers are put in evaluation mode and all gradient computation is deactivated. |
Source code in lume_model/models/torch_model.py
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
|
__init__(*args, **kwargs)
Initializes TorchModel.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
*args
|
Accepts a single argument which is the model configuration as dictionary, YAML or JSON formatted string or file path. |
()
|
|
**kwargs
|
See class attributes. |
{}
|
Source code in lume_model/models/torch_model.py
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
|
evaluate(input_dict)
Evaluates model on the given input dictionary.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_dict
|
dict[str, Union[InputVariable, float, Tensor]]
|
Input dictionary on which to evaluate the model. |
required |
Returns:
Type | Description |
---|---|
dict[str, Union[OutputVariable, float, Tensor]]
|
Dictionary of output variable names to values. |
Source code in lume_model/models/torch_model.py
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
|
insert_input_transformer(new_transformer, loc)
Inserts an additional input transformer at the given location.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
new_transformer
|
ReversibleInputTransform
|
New transformer to add. |
required |
loc
|
int
|
Location where the new transformer shall be added to the transformer list. |
required |
Source code in lume_model/models/torch_model.py
172 173 174 175 176 177 178 179 180 |
|
insert_output_transformer(new_transformer, loc)
Inserts an additional output transformer at the given location.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
new_transformer
|
ReversibleInputTransform
|
New transformer to add. |
required |
loc
|
int
|
Location where the new transformer shall be added to the transformer list. |
required |
Source code in lume_model/models/torch_model.py
182 183 184 185 186 187 188 189 190 |
|
random_evaluate(n_samples=1)
Returns random evaluation(s) of the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n_samples
|
int
|
Number of random samples to evaluate. |
1
|
Returns:
Type | Description |
---|---|
dict[str, Union[OutputVariable, float, Tensor]]
|
Dictionary of variable names to outputs. |
Source code in lume_model/models/torch_model.py
148 149 150 151 152 153 154 155 156 157 158 |
|
random_input(n_samples=1)
Generates random input(s) for the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n_samples
|
int
|
Number of random samples to generate. |
1
|
Returns:
Type | Description |
---|---|
dict[str, Tensor]
|
Dictionary of input variable names to tensors. |
Source code in lume_model/models/torch_model.py
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
|
to(device)
Updates the device for the model, transformers and default values.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
device
|
Union[device, str]
|
Device on which the model will be evaluated. |
required |
Source code in lume_model/models/torch_model.py
160 161 162 163 164 165 166 167 168 169 170 |
|
update_input_variables_to_transformer(transformer_loc)
Returns input variables updated to the transformer at the given location.
Updated are the value ranges and default of the input variables. This allows, e.g., to add a calibration transformer and to update the input variable specification accordingly.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
transformer_loc
|
int
|
The location of the input transformer to adjust for. |
required |
Returns:
Type | Description |
---|---|
list[InputVariable]
|
The updated input variables. |
Source code in lume_model/models/torch_model.py
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
|
TorchModule
Bases: Module
Wrapper to allow a LUME TorchModel to be used like a torch.nn.Module.
As the base model within the TorchModel is assumed to be fixed during instantiation, so is the TorchModule.
Source code in lume_model/models/torch_module.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
|
__init__(*args, model=None, input_order=None, output_order=None)
Initializes TorchModule.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
*args
|
Accepts a single argument which is the model configuration as dictionary, YAML or JSON formatted string or file path. |
()
|
Other Parameters:
Name | Type | Description |
---|---|---|
model |
TorchModel
|
The TorchModel instance to wrap around. If config is None, this has to be defined. |
input_order |
list[str]
|
Input names in the order they are passed to the model. If None, the input order of the TorchModel is used. |
output_order |
list[str]
|
Output names in the order they are returned by the model. If None, the output order of the TorchModel is used. |
Source code in lume_model/models/torch_module.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
|
dump(file, save_models=True, base_key='')
Returns and optionally saves YAML formatted string defining the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
file
|
Union[str, PathLike]
|
File path to which the YAML formatted string and corresponding files are saved. |
required |
base_key
|
str
|
Base key for serialization. |
''
|
save_models
|
bool
|
Determines whether models are saved to file. |
True
|
Source code in lume_model/models/torch_module.py
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
|
evaluate_model(x)
Placeholder method to modify model calls.
Source code in lume_model/models/torch_module.py
152 153 154 |
|
manipulate_output(y_model)
Placeholder method to modify the model output.
Source code in lume_model/models/torch_module.py
156 157 158 |
|
yaml(base_key='', file_prefix='', save_models=False)
Serializes the object and returns a YAML formatted string defining the TorchModule instance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
base_key
|
str
|
Base key for serialization. |
''
|
file_prefix
|
str
|
Prefix for generated filenames. |
''
|
save_models
|
bool
|
Determines whether models are saved to file. |
False
|
Returns:
Type | Description |
---|---|
str
|
YAML formatted string defining the TorchModule instance. |
Source code in lume_model/models/torch_module.py
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
|