Models
LUMEBaseModel
Bases: BaseModel
, ABC
Abstract base class for models using lume-model variables.
Inheriting classes must define the evaluate method and variable names must be unique (respectively). Models build using this framework will be compatible with the lume-epics EPICS server and associated tools.
Attributes:
Name | Type | Description |
---|---|---|
input_variables |
list[ScalarVariable]
|
List defining the input variables and their order. |
output_variables |
list[ScalarVariable]
|
List defining the output variables and their order. |
input_validation_config |
Optional[dict[str, ConfigEnum]]
|
Determines the behavior during input validation by specifying the validation config for each input variable: {var_name: value}. Value can be "warn", "error", or None. |
output_validation_config |
Optional[dict[str, ConfigEnum]]
|
Determines the behavior during output validation by specifying the validation config for each output variable: {var_name: value}. Value can be "warn", "error", or None. |
Source code in lume_model/base.py
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
|
default_input_validation_config
property
Determines default behavior during input validation (if input_validation_config is None).
default_output_validation_config
property
Determines default behavior during output validation (if output_validation_config is None).
__init__(*args, **kwargs)
Initializes LUMEBaseModel.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
*args
|
Accepts a single argument which is the model configuration as dictionary, YAML or JSON formatted string or file path. |
()
|
|
**kwargs
|
See class attributes. |
{}
|
Source code in lume_model/base.py
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
|
dump(file, base_key='', save_models=True, save_jit=False)
Returns and optionally saves YAML formatted string defining the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
file
|
Union[str, PathLike]
|
File path to which the YAML formatted string and corresponding files are saved. |
required |
base_key
|
str
|
Base key for serialization. |
''
|
save_models
|
bool
|
Determines whether models are saved to file. |
True
|
save_jit
|
bool
|
Determines whether the model is saved as TorchScript. |
False
|
Source code in lume_model/base.py
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 |
|
evaluate(input_dict)
Main evaluation function, child classes must implement the _evaluate method.
Source code in lume_model/base.py
342 343 344 345 346 347 |
|
verify_input_default_value(value)
Verifies that input variables have the required default values.
Source code in lume_model/base.py
312 313 314 315 316 317 318 319 320 |
|
yaml(base_key='', file_prefix='', save_models=False, save_jit=False)
Serializes the object and returns a YAML formatted string defining the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
base_key
|
str
|
Base key for serialization. |
''
|
file_prefix
|
str
|
Prefix for generated filenames. |
''
|
save_models
|
bool
|
Determines whether models are saved to file. |
False
|
save_jit
|
bool
|
Determines whether the model is saved as TorchScript |
False
|
Returns: YAML formatted string defining the model.
Source code in lume_model/base.py
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
|
process_torch_module(module, base_key='', key='', file_prefix='', save_modules=True, save_jit=False)
Optionally saves the given torch module to file and returns the filename.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
base_key
|
str
|
Base key at this stage of serialization. |
''
|
key
|
str
|
Key corresponding to the torch module. |
''
|
module
|
The torch module to process. |
required | |
file_prefix
|
Union[str, PathLike]
|
Prefix for generated filenames. |
''
|
save_modules
|
bool
|
Determines whether torch modules are saved to file. |
True
|
save_jit
|
bool
|
Determines whether the model gets saved as TorchScript. |
False
|
Returns:
Type | Description |
---|---|
Filename under which the torch module is (or would be) saved. |
Source code in lume_model/base.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
|
model_kwargs_from_dict(config)
Processes model configuration and returns the corresponding keyword arguments for model constructor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config
|
dict
|
Model configuration. |
required |
Returns:
Type | Description |
---|---|
dict
|
Configuration as keyword arguments for model constructor. |
Source code in lume_model/base.py
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
|
parse_config(config, model_fields=None)
Parses model configuration and returns keyword arguments for model constructor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config
|
Union[dict, str, TextIOWrapper, PathLike]
|
Model configuration as dictionary, YAML or JSON formatted string, file or file path. |
required |
model_fields
|
dict
|
Fields expected by the model (required for replacing relative paths). |
None
|
Returns:
Type | Description |
---|---|
dict
|
Configuration as keyword arguments for model constructor. |
Source code in lume_model/base.py
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
|
json_dumps(v, *, base_key='', file_prefix='', save_models=True, save_jit=False)
Serializes variables before dumping with json.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
v
|
Object to dump. |
required | |
base_key
|
Base key for serialization. |
''
|
|
file_prefix
|
Union[str, PathLike]
|
Prefix for generated filenames. |
''
|
save_models
|
bool
|
Determines whether models are saved to file. |
True
|
save_jit
|
bool
|
Determines whether the model is saved as TorchScript. |
False
|
Returns:
Type | Description |
---|---|
JSON formatted string. |
Source code in lume_model/base.py
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
|
json_loads(v)
Loads JSON formatted string and recursively deserializes the result.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
v
|
JSON formatted string to load. |
required |
Returns:
Type | Description |
---|---|
Deserialized object. |
Source code in lume_model/base.py
182 183 184 185 186 187 188 189 190 191 192 193 |
|
recursive_serialize(v, base_key='', file_prefix='', save_models=True, save_jit=False)
Recursively performs custom serialization for the given object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
v
|
dict[str, Any]
|
Object to serialize. |
required |
base_key
|
str
|
Base key at this stage of serialization. |
''
|
file_prefix
|
Union[str, PathLike]
|
Prefix for generated filenames. |
''
|
save_models
|
bool
|
Determines whether models are saved to file. |
True
|
save_jit
|
bool
|
Determines whether the model is saved as TorchScript. |
False
|
Returns:
Type | Description |
---|---|
Serialized object. |
Source code in lume_model/base.py
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
|
recursive_deserialize(v)
Recursively performs custom deserialization for the given object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
v
|
Object to deserialize. |
required |
Returns:
Type | Description |
---|---|
Deserialized object. |
Source code in lume_model/base.py
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
|
TorchModel
Bases: LUMEBaseModel
LUME-model class for torch models.
By default, the models are assumed to be fixed, so all gradient computation is deactivated and the model and transformers are put in evaluation mode.
Attributes:
Name | Type | Description |
---|---|---|
model |
Module
|
The torch base model. |
input_variables |
list[ScalarVariable]
|
List defining the input variables and their order. |
output_variables |
list[ScalarVariable]
|
List defining the output variables and their order. |
input_transformers |
list[Union[ReversibleInputTransform, Linear]]
|
List of transformer objects to apply to input before passing to model. |
output_transformers |
list[Union[ReversibleInputTransform, Linear]]
|
List of transformer objects to apply to output of model. |
output_format |
str
|
Determines format of outputs: "tensor" or "raw". |
device |
Union[device, str]
|
Device on which the model will be evaluated. Defaults to "cpu". |
fixed_model |
bool
|
If true, the model and transformers are put in evaluation mode and all gradient computation is deactivated. |
precision |
str
|
Precision of the model, either "double" or "single". |
Source code in lume_model/models/torch_model.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 |
|
__init__(*args, **kwargs)
Initializes TorchModel.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
*args
|
Accepts a single argument which is the model configuration as dictionary, YAML or JSON formatted string or file path. |
()
|
|
**kwargs
|
See class attributes. |
{}
|
Source code in lume_model/models/torch_model.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
|
input_validation(input_dict)
Validates input dictionary before evaluation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_dict
|
dict[str, Union[float, Tensor]]
|
Input dictionary to validate. |
required |
Returns:
Type | Description |
---|---|
Validated input dictionary. |
Source code in lume_model/models/torch_model.py
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
|
insert_input_transformer(new_transformer, loc)
Inserts an additional input transformer at the given location.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
new_transformer
|
ReversibleInputTransform
|
New transformer to add. |
required |
loc
|
int
|
Location where the new transformer shall be added to the transformer list. |
required |
Source code in lume_model/models/torch_model.py
242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
|
insert_output_transformer(new_transformer, loc)
Inserts an additional output transformer at the given location.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
new_transformer
|
ReversibleInputTransform
|
New transformer to add. |
required |
loc
|
int
|
Location where the new transformer shall be added to the transformer list. |
required |
Source code in lume_model/models/torch_model.py
257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
output_validation(output_dict)
Itemizes tensors before performing output validation.
Source code in lume_model/models/torch_model.py
191 192 193 194 195 |
|
random_evaluate(n_samples=1)
Returns random evaluation(s) of the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n_samples
|
int
|
Number of random samples to evaluate. |
1
|
Returns:
Type | Description |
---|---|
dict[str, Union[float, Tensor]]
|
Dictionary of variable names to outputs. |
Source code in lume_model/models/torch_model.py
216 217 218 219 220 221 222 223 224 225 226 227 228 |
|
random_input(n_samples=1)
Generates random input(s) for the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n_samples
|
int
|
Number of random samples to generate. |
1
|
Returns:
Type | Description |
---|---|
dict[str, Tensor]
|
Dictionary of input variable names to tensors. |
Source code in lume_model/models/torch_model.py
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
|
to(device)
Updates the device for the model, transformers and default values.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
device
|
Union[device, str]
|
Device on which the model will be evaluated. |
required |
Source code in lume_model/models/torch_model.py
230 231 232 233 234 235 236 237 238 239 240 |
|
update_input_variables_to_transformer(transformer_loc)
Returns input variables updated to the transformer at the given location.
Updated are the value ranges and default of the input variables. This allows, e.g., to add a calibration transformer and to update the input variable specification accordingly.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
transformer_loc
|
int
|
The location of the input transformer to adjust for. |
required |
Returns:
Type | Description |
---|---|
list[ScalarVariable]
|
The updated input variables. |
Source code in lume_model/models/torch_model.py
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
|
InputDictModel
Bases: BaseModel
Pydantic model for input dictionary validation.
Attributes:
Name | Type | Description |
---|---|---|
input_dict |
Dict[str, Union[Tensor, float]]
|
Input dictionary to validate. |
Source code in lume_model/models/torch_model.py
539 540 541 542 543 544 545 546 547 548 |
|
TorchModule
Bases: Module
Wrapper to allow a LUME TorchModel to be used like a torch.nn.Module.
As the base model within the TorchModel is assumed to be fixed during instantiation, so is the TorchModule.
Source code in lume_model/models/torch_module.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
|
__init__(*args, model=None, input_order=None, output_order=None)
Initializes TorchModule.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
*args
|
Accepts a single argument which is the model configuration as dictionary, YAML or JSON formatted string or file path. |
()
|
Other Parameters:
Name | Type | Description |
---|---|---|
model |
TorchModel
|
The TorchModel instance to wrap around. If config is None, this has to be defined. |
input_order |
list[str]
|
Input names in the order they are passed to the model. If None, the input order of the TorchModel is used. |
output_order |
list[str]
|
Output names in the order they are returned by the model. If None, the output order of the TorchModel is used. |
Source code in lume_model/models/torch_module.py
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
|
dump(file, save_models=True, base_key='', save_jit=False)
Returns and optionally saves YAML formatted string defining the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
file
|
Union[str, PathLike]
|
File path to which the YAML formatted string and corresponding files are saved. |
required |
base_key
|
str
|
Base key for serialization. |
''
|
save_models
|
bool
|
Determines whether models are saved to file. |
True
|
save_jit
|
Whether the model is saved using just in time pytorch method |
False
|
Source code in lume_model/models/torch_module.py
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
|
evaluate_model(x)
Placeholder method to modify model calls.
Source code in lume_model/models/torch_module.py
168 169 170 |
|
manipulate_output(y_model)
Placeholder method to modify the model output.
Source code in lume_model/models/torch_module.py
172 173 174 |
|
yaml(base_key='', file_prefix='', save_models=False, save_jit=False)
Serializes the object and returns a YAML formatted string defining the TorchModule instance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
base_key
|
str
|
Base key for serialization. |
''
|
file_prefix
|
str
|
Prefix for generated filenames. |
''
|
save_models
|
bool
|
Determines whether models are saved to file. |
False
|
save_jit
|
bool
|
Determines whether the structure of the model is saved as TorchScript |
False
|
Returns:
Type | Description |
---|---|
str
|
YAML formatted string defining the TorchModule instance. |
Source code in lume_model/models/torch_module.py
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
|