LUME-model
LUME-model holds data structures used in the LUME modeling toolset. Variables and models built using LUME-model will be compatible with other tools. LUME-model uses Pydantic models to enforce typed attributes upon assignment.
Installing LUME-model
LUME-model can be installed with conda using the command:
conda install lume-model -c conda-forge
Variables
The lume-model variables are intended to enforce requirements for input and output variables by variable type. For now, only scalar variables (floats) are supported.
Minimal example of scalar input and output variables:
from lume_model.variables import ScalarInputVariable, ScalarOutputVariable
input_variable = ScalarInputVariable(
name="example_input",
default=0.1,
value_range=[0.0, 1.0],
)
output_variable = ScalarOutputVariable(name="example_output")
Models
The lume-model base class lume_model.base.LUMEBaseModel
is intended to guide user development while allowing for flexibility and customizability. It is used to enforce LUME tool compatible classes for the execution of trained models.
Requirements for model classes:
- input_variables: A list defining the input variables for the model. Variable names must be unique. Required for use with lume-epics tools.
- output_variables: A list defining the output variables for the model. Variable names must be unique. Required for use with lume-epics tools.
- evaluate: The evaluate method is called by the serving model. Subclasses must implement this method, accepting and returning a dictionary.
Example model implementation and instantiation:
from lume_model.base import LUMEBaseModel
from lume_model.variables import ScalarInputVariable, ScalarOutputVariable
class ExampleModel(LUMEBaseModel):
def evaluate(self, input_dict):
output_dict = {
"output1": input_dict[self.input_variables[0].name] ** 2,
"output2": input_dict[self.input_variables[1].name] ** 2,
}
return output_dict
input_variables = [
ScalarInputVariable(name="input1", default=0.1, value_range=[0.0, 1.0]),
ScalarInputVariable(name="input2", default=0.2, value_range=[0.0, 1.0]),
]
output_variables = [
ScalarOutputVariable(name="output1"),
ScalarOutputVariable(name="output2"),
]
m = ExampleModel(input_variables=input_variables, output_variables=output_variables)
Models and variables can be saved and loaded from YAML files, e.g. m.dump("example_model.yml")
writes the following to file
model_class: ExampleModel
input_variables:
input1:
variable_type: scalar
default: 0.1
is_constant: false
value_range: [0.0, 1.0]
input2:
variable_type: scalar
default: 0.2
is_constant: false
value_range: [0.0, 1.0]
output_variables:
output1: {variable_type: scalar}
output2: {variable_type: scalar}
and can be loaded by simply passing the file to the model constructor:
from lume_model.base import LUMEBaseModel
class ExampleModel(LUMEBaseModel):
def evaluate(self, input_dict):
output_dict = {
"output1": input_dict[self.input_variables[0].name] ** 2,
"output2": input_dict[self.input_variables[1].name] ** 2,
}
return output_dict
m = ExampleModel("example_model.yml")
Developer
Clone this repository:
git clone https://github.com/slaclab/lume-model.git
Create an environment lume-model-dev with all the dependencies:
conda env create -f dev-environment.yml
Install as editable:
conda activate lume-model-dev
pip install --no-dependencies -e .