A S NATIONAL =4 THE UNIVERSITY OF

N = (g 4
qu"[b || BERKELEY LAB i SEEaor WY CHICAGO

Day 9: Reinforcement Learning

Presenter: Auralee Edelen
Day 9

Unsupervised Learning

no labeled data -2 infer structure

Supervised Learning

learn known input/output pairs

Reinforcement Learning

interact with the environment = adjust behavior based on reaction

Came out of trying to understand animal and human
behavior, and in turn design systems capable of learning
like animals and humans

Many parallels to classical / optimal control and Bayesian
optimization (developed in different communities)

Some major milestones in deep (i.e w/ NNs) RL:
- 1992: TD-Gammon, human-level backgammon via self-play

- 2013: Atari games, comparable to a human game tester;
used deep Q-networks and CNNs (analyze state of the board)

- 2015: AlphaGo beats Go champions; used initial supervised
learning to imitate expert players; monte-carlo tree search
with value network and policy network

- 2017: AlphaZero beats Go champions without any human
examples; counter-intuitive solutions studied

' INSERT COIN

e

Quealion : How daco ATl anl oot ol 1471&(7{ fe l"“ff"‘ 4

e rxmjcw%ﬂmfta? Heow C’(/H'f) Aﬁ%fl«(ji/lxj /Mv-(a,a,cf wilh obrive?
I ack i LD«wza/am hecovse ot one timg L conaidined
ot p@ﬂffw Hhe /ww«,a/ﬁm becpade s AZ’ /Cwéw«j PRSP .
ALk what uTWM ha,ppen ,]4 4 o G _owch el grch {a—c’f’
wﬁf&% 0(4‘/“6 ‘M& woé(:cv\ Ww\/él.%) a'n/'/ Sllum xw&wftf»j e 122~

sl tovne of Mriveo wnd geals. Whike e o AA

[/‘74""1/% Atme /luél/wew ¢)liu.a /{,ﬁa) /(/(((MA mjk'wmnvlt,f{
o boric , ppae Tl pact of He pariens M%“(T4

/ 4‘”—/’5 AA /Md—«/ a4 9 zét/ -»(,}1 wlwtw/ V. V%] 474/{%4 MA:AG-a
; /: rum o el ﬁ/a% on Hat /Jel%wm‘mﬁ md’aﬁg

{

/’”"’7(4 (7 /MW/WM%QM?W

e m——

CMW/ZWM SR, 6! : a/nz/' 7 1 /Jp{/ e A mww/ttéh
e mﬁiﬁ@/zfﬁ&f/ e

fimd i srilflon strer brigpisifovmed e e<Tin

s AP %2 porar 731444\/ bl e ol afkt/%,y“ : L

L fione primany 7%4%‘ _acema Yo be proe hucavae ~//‘a‘
%%’M% be a mew aulematif, con=

example from a 1976 entry of Richard Sutton’s research notebook

IH‘] Example: Driving + Obstacle Avoidance
L<AA4 A

boulder

-
-

Some risk of sudden oncoming traffic

to a, = continue straight

Iﬂ‘] Example: Driving + Obstacle Avoidance
L<AA4 A

boulder

-
-

Some risk of sudden oncoming traffic

to a, = continue straight

" 4 [

t1 a, = start turning left

boulder

-
-

Some risk of sudden oncoming traffic

to a, = continue straight

" 4 [

t1 a, = start turning left

1

| t3 a; = returnto straight

boulder

-
-

Some risk of sudden oncoming traffic

to a, = continue straight

" 4 [

t1 a, = start turning left

=

| t3 a; = returnto straight

ts a, = start turning right

boulder

-
-

Some risk of sudden oncoming traffic

to a, = continue straight

" 4 [

t1 a, = start turning left

=

| t3 a; = returnto straight

ts a, = start turning right

ts as = return to straight

boulder

-
-

Some risk of sudden oncoming traffic

to a, = continue straight

" 4 [

t1 a, = start turning left

State -

— view of surroundings
— current direction and speed

| t3 a; = returnto straight

ts a, = start turning right

ts as = return to straight

boulder

-
-

Some risk of sudden oncoming traffic

to a, = continue straight

" 4 [

t1 a, = start turning left

State -

— view of surroundings
— current direction and speed

| t3 a; = returnto straight

Actions l

—turn the wheel left or right by n degrees _ _
— depress gas or break by n degrees ty a, = start turning right

ts as = return to straight

State
—view of surroundings
— current direction and speed

Actions
—turn the wheel left or right by n degrees
— depress gas or break by n degrees

Driving algorithm (a control policy)
— given observed state, decide on an action to take
— looking forward in time + planning wrt impact of actions

boulder

-
-

Some risk of sudden oncoming traffic

to

a, = cqntinue straight

" 4

5]

a, = start turning left

=

| t3 a; = returnto straight

ts a, = start turning right

ts as = return to straight

boulder

-
-

Some risk of sudden oncoming traffic

to a, = continue straight

" 4 [

t1 a, = start turning left

State -

— view of surroundings
— current direction and speed

| t3 a; = returnto straight

Actions l

—turn the wheel left or right by n degrees _ _
— depress gas or break by n degrees ty a, = start turning right

Driving algorithm (a control policy)
— given observed state, decide on an action to take - -
— looking forward in time + planning wrt impact of actions

ts as = return to straight

How did you learn to drive?
(1) watching and imitating others, (2) having an instructor watch and evaluate / correct your driving, (3) solo experience over time
- There are analogies for each of these in the field of reinforcement learning

State (S7,1), Reward (R,)

Initial
-]
State e Action (A;)

RL agent interacts with an environment over time = goal is to maximize total returned reward

Ih"fs Basic Setup for an RL Problem
CLEE)

Initial
State

t

State (S7,1), Reward (R,)

Action (Ay)]

RL agent interacts with an environment over time = goal is to maximize total returned reward

State — system information at present time

Action —a change the agent can make to the environment

Reward — scalar return from the environment at present time ’ !‘A“

Ih"fs Basic Setup for an RL Problem
CLEE)

Initial
State

t

State (S7,1), Reward (R,)

Action (Ay)]

RL agent interacts with an environment over time = goal is to maximize total returned reward

State — system information at present time
Action —a change the agent can make to the environment

Reward — scalar return from the environment at present time ’ !‘A“

Episode — sequences of (statel = actionl - state2 + reward2); ends on some terminal condition

Initial
State

t

State (S7,1), Reward (R,)

Action (Ay)]

RL agent interacts with an environment over time = goal is to maximize total returned reward

State — system information at present time
Action —a change the agent can make to the environment

Reward — scalar return from the environment at present time I A

Episode — sequences of (statel = actionl - state2 + reward2); ends on some terminal condition

Agent acts according to a policy () — determines actions to take based on observed state

Iﬂ‘] Illustrative Example: Mountain Car Problem
LA A

Goal is to get to top of hill, but in an under-powered car!

“ls lllustrative Example: Mountain Car Problem

Goal is to get to top of hill, but in an under-powered car!

State:
car position and velocity
bounded [(-1.2, 0.6), (-0.07, 0.07)]
initialized randomly at [(-0.6, -0.4), 0]

Action:
accelerate left [-1]
accelerate right [+1]

don’t accelerate [0]

Reward:
0 if reach the top (position = 0.05)

-1 if position is < 0.5

Episode:
Ends if position > 0.5 or episode length > 200

N

Velocity = Velocity + Action * 0.001 + cos(3 * position) * (—0.0025)

Position

Position + Velocity

S

Problem formulated in: A Moore, Efficient Memory-Based Learning for Robot Control, PhD thesis, University of Cambridge, 1990.

%‘ lllustrative Example: Mountain Car Problem

Goal is to get to top of hill, but in an under-powered car!

State:
car position and velocity
bounded [(-1.2, 0.6), (-0.07, 0.07)]
initialized randomly at [(-0.6, -0.4), 0]

Action:
accelerate left [-1]
accelerate right [+1]

don’t accelerate [0]

Reward:
0 if reach the top (position = 0.05)

-1 if position is < 0.5

Episode:
Ends if position > 0.5 or episode length > 200

N

Velocity = Velocity + Action * 0.001 + cos(3 * position) * (—0.0025)

Position

Before Training

Position + Velocity

After Training

S

Problem formulated in: A Moore, Efficient Memory-Based Learning for Robot Control, PhD thesis, University of Cambridge, 1990.

%‘ lllustrative Example: Mountain Car Problem

Goal is to get to top of hill, but in an under-powered car!

State:
car position and velocity
bounded [(-1.2, 0.6), (-0.07, 0.07)]
initialized randomly at [(-0.6, -0.4), 0]

Action:
accelerate left [-1]
accelerate right [+1]

don’t accelerate [0]

Reward:
0 if reach the top (position = 0.05)

-1 if position is < 0.5

Episode:
Ends if position > 0.5 or episode length > 200

N

Velocity = Velocity + Action * 0.001 + cos(3 * position) * (—0.0025)
Position = Position + Velocity

Before Training After Training

S

Good example regarding exploration vs. exploitation
= need to explore seemingly sub-optimal actions to discover how to get enough momentum

Problem formulated in: A Moore, Efficient Memory-Based Learning for Robot Control, PhD thesis, University of Cambridge, 1990.

lllustrative Example: Mountain Car Problem

Goal is to get to top of hill, but in an under-powered car!

(State:) Car Final Position
0.6
+ car position and velocity
. bounded [(-1.2, 0.6), (-0.07, 0.07)] el
« initialized randomly at [(-0.6, -0.4), 0] 0.2 4
0.0 -
Action:
S -0.2
« accelerate left [-1] §
: * 04
. accelerate right [+1]
« don’t accelerate [0] -0.6 -
-0.8 -
Reward:
. 0ifreach the top (position = 0.05) aal
. -1if position is < 0.5 0 500 1000 Eigge 2000 2500 3000
. Good example regarding exploration vs. exploitation
Episode: - need to explore seemingly sub-optimal actions to discover how to get enough momentum
. Ends if position > 0.5 or episode length > 200

Problem formulated in: A Moore, Efficient Memory-Based Learning for Robot Control, PhD thesis, University of Cambridge, 1990.

Ih") Continuous vs. Discrete State and Action Spaces
A4 b

State and action spaces can be discrete or continuous

Iﬂ’) Continuous vs. Discrete State and Action Spaces
A4 b

State and action spaces can be discrete or continuous

9, aA,

Actions: discrete move one square up, down, left, right
State: discrete position on board

Is{s Continuous vs. Discrete State and Action Spaces
A4 b

State and action spaces can be discrete or continuous

[]
t}{o
A
-

Actions: discrete move one square up, down, left, right
State: discrete position on board

Actions: discrete acceleration factor [-1, 1, O]
State: continuous position and velocity

Ih"fs Continuous vs. Discrete State and Action Spaces
A4 b

State and action spaces can be discrete or continuous

)
t“,go
A"l 4
-—w)

Actions: discrete move one square up, down, left, right
State: discrete position on board

Actions: discrete acceleration factor [-1, 1, O]
State: continuous position and velocity

- Usually in accelerators we are dealing with continuous state and action spaces

Iﬂ‘[s Returns and Episodes
CLVAY

Trying to maximize total estimated return = how much should we care about near-term vs. long-term

rewards?
Total expected return

GtiRH_l—I—RH_Q—I—RH_g—I-'“—I—RT

G: = Ripa ;’YRtJrz =+ ’YQRt+3 gl = Z ’Yth+lc+1
e}

Discount factor, 0 < vy <1

v = 0 2 prioritize near-term rewards

Can re-write in a form that will be useful in trying to learn an estimate of total reward:

Gy = Riy1 +YRir2 + 7°Regs + V' Rega + - -
= Ri41 + ’Y(Rt+2 -+ gt 72Rt+4 o)
— Rt_|_1 =5 7Gt+1

Islls Value Functions
A4 b

Useful to estimate the expected long term reward at time t 2 encoded as value functions

Can be based on the present state, or a state-action pair

UW(S) = EW[Gt | StZS] = E,,r Z’Yth_{_k;_;_l St:S

k=0

gx(5,a) = EAG; | S;=8,4; =a] = E; ZWth+k+1 Si=s8,At=a

k=0
Best method for encoding Al A2 A3 O O
the value function depends S1| Q(S1, A1)|Q(S1, A2) | Q(S1, A3) 0 O
on :che size of the state and so | a2, Al as2, A2) | as2, A3) (S, A) 8 2% 'O O » Q(S, A)
action space (and whether QO
it is continuous or discrete) §3 | AS3, AT)| Q(S3, A2)| Q(S3, A3) O O

Tabular Q-function Parameterized Q-function

"[s Policies

Policy — how we decide to take certain actions given an observed state

Option 1: Estimate value function, then use it to choose a; O O
O 5 O a, = max Q(s;, a)
' a
s 0O O +esa p
D 2"
o QO O Could be costly if have big
or continuous action space!

"[s Policies

Policy — how we decide to take certain actions given an observed state

Option 1: Estimate value function, then use it to choose a; O O
- Greedy policy —always choose the best action (R O 4, = max 0(s,, a)
' a
s OO0 O esa
- E-greedy policy —take random action with probability €, 0. - O /
otherwise take the greedy action (adds exploration) 0O O Could be costly if have big
or continuous action space!

Ih"fs Policies
A4 b

Policy — how we decide to take certain actions given an observed state

Option 1: Estimate value function, then use it to choose a; O O

- Greedy policy —always choose the best action O . ’ < g, = max Q(s,, @)

' a
(s,a) O O 0O 060
- E-greedy policy —take random action with probability €, 0. - O /
otherwise take the greedy action (adds exploration) 0O 0 Could be costly if have big
or continuous action space!

Option 2: Parameterize the policy directly g (als)

- Mapping states directly to best actions

- Try to improve the policy by adjusting 6 O

St O+ a g (als)

3800
580

”[s Policies

Policy — how we decide to take certain actions given an observed state

Option 1: Estimate value function, then use it to choose a; O O
- Greedy policy —always choose the best action 0O - a, = max Q(s,,)
' a
(s,a) O O | O e
- E-greedy policy —take random action with probability €, 0 O /
otherwise take the greedy action (adds exploration) 0O O Could be costly if have big
or continuous action space!
Option 2: Parameterize the policy directly g (als)
- Mapping states directly to best actions O _ O
- Try to improve the policy by adjusting 6 O .- O
se O30 O+ a g (als)
o .
o 00

Option 3: Have a world model (for state transitions St —> S¢41)?
- Can explicitly plan with model to choose the best action
- Examples: LQR, Model Predictive Control [
- Model could be analytic or learned

(e.g. GPs, NNs, GMM, etc)

- Can backpropagate through model to learn policy possible
action series

predicted []
reward

chosen action az

”[s Policies

Policy — how we decide to take certain actions given an observed state

Option 1: Estimate value function, then use it to choose a;

Greedy policy — always choose the best action

E-greedy policy —take random action with probability €,
otherwise take the greedy action (adds exploration)

~
%)

~-

Q
—

O . Q(S' Cl)

a; = maxQ(sg a)
a

/

Could be costly if have big
or continuous action space!

Option 2: Parameterize the policy directly g (als)

Model-free RL

Mapping states directly to best actions
Try to improve the policy by adjusting 6

(%)
~

O —0

[
8'0
o O O
0. —0
50
o O O

mg(als)

l Model-based RL

Option 3: Have a world model (for state transitions s, _, s;,)?

Can explicitly plan with model to choose the best action
Examples: LQR, Model Predictive Control

Model could be analytic or learned
(e.g. GPs, NNs, GMM, etc)

Can backpropagate through model to learn policy

possible
action series

predicted
reward

chosen action

”[s Policies

Policy — how we decide to take certain actions given an observed state

o Option 1: Estimate value function, then use it to choosex, O O
§ - Greedy policy —always choose the best action 0O - a, = maxQ(s,, @)
¢ s,a) OO O+ 0 “
§ - E-greedy policy —take random action with probability €, 0O | O /
otherwise take the greedy action (adds exploration) 0O O Could be costly if have big '
or continuous action space!
= Option 2: Parameterize the policy directly mg(als)
5] - Mapping states directly to best actions O O
& - Try to improve the policy by adjusting 6 O .- O
S stg_-' '®) O+ a g (als)
Model-free RL O O O
Model-based RL
St
Option 3: Have a world model (for state transitions s, _, s,,4)?
- Can explicitly plan with model to choose the best action [predicted []
- Examples: LQR, Model Predictive Control reward
- Model could be analytic or learned .
(e.g. GPs, NNs, GMM, etc) possible chosen action

- Can backpropagate through model to learn policy

action series

”[s Policies

Policy — how we decide to take certain actions given an observed state

Value Based

@y Gradients (|

Actor-Critic

Option 1: Estimate value function, then use it to choosex, O O
- Greedy policy —always choose the best action O -_ _ a, = max Q(s,,)
s0) O O O 06 ¢
- E-greedy policy —take random action with probability €, 0O O /
otherwise take the greedy action (adds exploration) 0O O Could be costly if have big
or continuous action space!
Option 2: Parameterize the policy directly g (als)
- Mapping states directly to best actions O _ O
- Try to improve the policy by adjusting 6 O .- O
se O30 O+ a g (als)
0 .
o OO

Model-free RL

Model-based RL

Option 3: Have a world model (for state transitions s, _, s;,)?
- Can explicitly plan with model to choose the best action
- Examples: LQR, Model Predictive Control

- Model could be analytic or learned
(e.g. GPs, NNs, GMM, etc)

- Can backpropagate through model to learn policy

predicted
reward

possible
action series

chosen action

RL Algorithms

{ 3
Model-Free RL Model-Based RL
Policy Optimization Q-Learning Learn the Model Given the Model
Policy Gradient < \ DQN > World Models |—>{ AlphaZero
2 . —> DDPG < : : : .
A2C / A3C = > G5l > I12A
—> TD3 <
PPO < QR-DQN > MBMF
—> SAC < : |
TRPO < > HER > MBVE

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html|

N\ [
Bayesian Optimization Reinforcement Learning
» Trajectory control (Kain et al., PRAB
* FEL optimization (Duris et al. 2020) 2020)
=3
E gao
§1 ' o: 0 25 50 75 100 125 150 175 200
) — GP '
P ; GP w/ corr. -05
00 10 20 30 40 50 -1.0
Step number C1s - ;:lf;aelt
* Injection efficiency o
* FEL optimization (O’Shea, et al., 2020)
« Emittance optimization at SPEAR3
(Hanuka et al. 2021) * Magnet power supply (St. John et al.,
PRAB 2021)
» Laser plasma accelerators (Jalas et al,
PRL 2021, Shaloo et al Nature 2020) * Fast switching between FEL pulse
J _ energies (Edelen et al., NeurlPS 2017) y

Model Predictive Control

* RFresonant frequency (Edelen, et al. TNS 2016)
. lon source control (NIMA 2016)

Can treat many high-level accelerator tuning problems as either time-
dependent or time-independent...

g o L1X
Q XTCAV

laser

profile A :
BC1250 MeV B2 4.3 GeV 14 GeV undulator
, SaC o’ “
Q(:.
i
\._/ “search for optimal settings”
ok b
vﬁ “game to take actions that maximize
J
Ve performance over time”

as machine drifts over time 2 reoptimize or keep playing

Some problems need to be treated as time-dependent...

RF electron gun at the Fermilab Accelerator Radio frequency quadrupole (RFQ) for the
Science and Technology (FAST) facility PIP-Il Injector Test

)
=
(=}
8
°
(%
g8
=X
o
| LCW supply
ﬂ cooling
skid
< CWreturn warm return
P -
LCW supply
L cool supply
heater + -
ixi TO6
TO1 control mixing chamber [e
valve
€ pump
©_T02

long

transport helical

delay mixer

RFQ vanes
coupling through Cu

jwra1s °f 01044

-

Bayesian Optimization

RBF
Model Uncertainty Posterior Samples Kernel Function
41 .

7.5 10
5.0
25

0.0

-2.51

y (objective)

-5.0 B

~751 ‘ 0

- 2 0 2 4 -4 2 0

x (variable)

® evaluations
true
function
acquisition
function
mean
prediction
2x std. dev.

-04 -02 00 02 04 Figs courtesy
Johannes
X (variable) Kirschner,

ETH
Select sample x = observe objective = refit surrogate model

- use model predictions and uncertainty to choose next point
according to an acquisition functions

J

-

Bayesian Optimization

RBF
Model Uncertainty Posterior Samples Kernel Function
41

7.5 10

-2.51

y (objective)

o N & o ®

X (variable)

® evaluations
true
function
acquisition
function
mean
prediction

2x std. dev.

-0.4 -0.2 0.0 0.2 0.4 Figs courtesy

Johannes
X (variable) Kirschner,

ETH
Select sample x = observe objective = refit surrogate model

- use model predictions and uncertainty to choose next point
according to an acquisition functions

-

Reinforcement Learning

system state, reward C

€
Agent _
actions €

Observe state = take action according to a control policy

- observe reward = update policy or value function

-

y (objective)

Bayesian Optimization

Model Uncertainty

RBF

Posterior Samples

Kernel Function

—2:5

7.51
5.0
2.51
0.0

=5.0
-7.54

10

o N & o ®

x (variable)

-0.4

-0.2

0.0 0.2

X (variable)

T I

® evaluations

true
function

acquisition
function

mean
prediction

2x std. dev.

Figs courtesy
Johannes
Kirschner,
ETH

Select sample x = observe objective = refit surrogate model
- use model predictions and uncertainty to choose next point
according to an acquisition functions

N\

Reinforcement Learning

system state, reward (m
=

Agent "
A= e

actions

Many ways to construct agent that learns from reward:

Slale. = S = AN O

" Lamrae g ?b\'& VS“

Sla\e

i > o =
A N O

)
NS \]Gk\\'\b Q\AV\Q\\OJ\

(can optimize to choose
) action) _
Observe state = take action according to a control policy

- observe reward = update policy or value function

J

-

4 Bayesian Optimization \(Reinforcement Learning
RBF
e Model Uncertainty ol Posterior Samples o Kernel Function System State, reward (
g 5.0 8
g 2.5 6
o) 0.0 ol t
o N 25 . Agent _
> =] . actions E
42§ 3 N B N A @\:g_r
x (variable)
Many ways to construct agent that learns from reward:
3
® evaluations \
t == A (N'O

— foreton Skl 7 G50 -

- acquilsition 5 1)
function N\ \Q,Ouf*'\ké: ?b\'.(VS
mean

~77 prediction :
2x std. dev.

| Slale o]
—-04 -02 00 02 04 Figs courtesy R I T
Johannes ")
x (variable) Kirschner, N Ja \nte anvon
ETH
Select sample x = observe objective = refit surrogate model b >tk
- . . serve state = take action according to a control polic
- use model predictions and uncertainty to choose next point g policy
according to an dcquisition functions - observe reward = update policy or value function
VAN J

Analogous concepts, different terminology and usually different setting:
- reward
surrogate model = value function
acquisition function = policy
acquire new sample = take an action

objective

4 Bayesian Optimization \(Reinforcement Learning)
RBF
e Model Uncertainty ol Posterior Samples o Kernel Function System State, rewa rd (
g 5.0 8
g 2.5 6
rox 0.0+ ol t
o N , 25 . Agent _
N O . actions £
e S B N A @\:E_r
x (variable)
Many ways to construct agent that learns from reward:
3
® evaluations \
t = a&A(~N'O
— foreton Skl 72 O3, -
____ acquisition (\\ “
function 4G
e \earacd ?b\ .
prediction :
2x std. dev.
Sla e
-0.4 =02 0.0 0.2 0.4 Figs courtesy a N O 7 s k
Johannes ~ ")
x (variable) Kirschner, N Ja \nte anvon
ETH
Select sample x = observe objective = refit surrogate model b >tk
- . . serve state = take action according to a control polic
- use model predictions and uncertainty to choose next point g policy
according to an dcquisition functions - observe reward = update policy or value function
g AN J

objective = reward ey

Analogous concepts, different terminology and usually different setting: | <.\« %\/@ o
‘7 -
surrogate model = value function B

&\

acquisition function = policy

Siiﬁ—\///
acquire new sample = take an action

& ccele raXo —

Moo ek

s«n Model P
LA A L

past

present

redictive Control

For accelerator physicists, it is conceptually useful to think about model predictive control first:

future

Immediate Past
(data sent to controller)

< NP L

Measured disturbance

Previous control actions

Previous system output
|
by e =

Desired
output

—> Possible Future

(at each time step, iterate through the next
series of proposed actions until the
predicted system output is acceptable)

N

Actions proposed by controller
to achieve desired output

Predicted system output from model
given the proposed control actions

Prediction Horizon (N,)

\j

Control Horizon (N)

| | | | |

| | | |

t-1

t t+l

s‘] Model Predictive Control
CLEE)

For accelerator physicists, it is conceptually useful to think about model predictive control first:

past present future
Immediate Past > Possible Future Basic conce pt:
(data sent to controller) (at each time step, iterate through the next
series of proposed actions until the
o_o\o_o/o\o_ predicted system output Is acceptable) 1. Use a predictive model to assess the outcome of possible future actions
Measured disturbance 2. Choose the best series of actions by optimizing a set of planned actions,
W with respect to a cost function over a set time horizon
Actions proposed by controller 3. Execute the first action
to achieve desired output
4. Gather next time step of data

Previous control actions 5) Repeat

Predicted system output from model

Previous system output
oy P given the proposed control actions * Measurements

I \H—a—c——o—O—o

s = ahonea v Model
Desired o _ Proposed Process
output Prediction Horizon (N,) & Actions \

. ke, oo Criteria Met? :
Control Horizon (N) _ Optimization | o | o ves |_Actions

| | | | | | | | | | | | | |
t-1 t t+1 t+N, t+N,

s‘] Model Predictive Control
CLEE)

past present

future

Immediate Past
(data sent to controller)

&8, g

Measured disturbance

Previous control actions

Previous system output
|
.

Desired
output

> Possible Future
(at each time step, iterate through the next
series of proposed actions until the

predicted system output is acceptable)
b

W

Actions proposed by controller
to achieve desired output

Predicted system output from model
given the proposed control actions

Prediction Horizon (N,)

\j

Control Horizon (N)

Predicted cost is calculated over future time horizon:

Reference Trajectory Measured Variables

Y. (K)...y (k+N)

u (k=1)...u k=N)

v v

Optimization of Controlled Variable Trajectories

Predicted Outputs

g y,(K)...y(k+N)

Y :
[Gost Function] Prant Mode
] Constraints \ A

Future Inputs !
u (k)...u (k+N —1) :

\ Solver

u_ (k)

» Plant

N,, previous measurements
N, future time steps predicted

N_future time steps controlled

Py [Gk + D) = 3k + D]
(output variable targets)

Np—l

: g 2
2731 Yo {Wu.i [u,- (k + 1) — wrer(k + l)]}
(controllable variable targets)

Z;.lil]lzl.vp_l{WAu'j [Uj(k + l) = uj (k +i— 1)]}2

=0
(movement size)

t-1

t t+ t+N t+N,

Note: ‘process” and “plant” come from classic control =2 it’s the system being controlled

Many of the problems we discussed so far in the class are singe timestep input, single-timestep output problems
- when control actions are taken at a faster rate than the system dynamics, we need to take into account time-evolution of system

DeepMind Al Reduces Google Data Centre

Cooling Bill by 40%

Transport delays, variable heat load
Efficient servers were not enough
--> needed better control of cooling system

RF accelerating cavities (e.g. resonance control)
= __—== e li— ‘»‘ \ = = . [

——— Pl e — i) i‘

Cryogenic
systems

Transport delays, variable heat load, complex dynamics

8“ Example: Resonant Frequency Control at FAST
QYU

Temperature [°C]

Resonant frequency controlled via temperature
* Long transport delays and thermal responses
* Two controllable variables: heater power + flow valve aperture

Applied model predictive control with a neural network model
trained on measured data

~ 95X faster settling time + no large overshoot

-
<%

LCW return

LCW supply i
heater + <

control

TO1
valve

Gun Water

O RF gun O
System Layout TN TOUT

mixing chamber o T06

% pump
T02

long
transport
delay

O
TCAV

Existing Feedforward/PID Controller Model Predictive Controller
435 : — v , [T 7 1 | | : : TCAV
| ; : » ; 5 —TCAV e \ —TIN
v ; N | --TCAV target 1 o
43l » _ : TCAV target |
: E \ L A) : RN B ;G.
4254 — - °
s " o =
i \ LN d
42 ; ™~ 7 TR oy Q
T T g
M5 - T
: | oot 2 e
N2 4 6 8 10 12 14 16 18 20 22 24 26 28 0 1 2 3 4 5 6 7 8 9 10

Time Elapsed [minutes] Time Elapsed [minutes]

Note that the oscillations are largely due to the transport delays and water recirculation, rather than PID gains

Note differences in scales!

Edelen, IPAC’15 ; Edelen, TNS, 2016

h"] Model Predictive Control: Analogies to Model-free RL
\=AA A

Immediate Past —> Possible Future

(data sent to controller) (at each time step, iterate through the next
series of proposed actions until the

m predicted system output is acceptable)
Measured disturbance r . .
W Instead, model-free RL methods try to estimate aspects of this

Actions proposed by controller
to achieve desired output
~\

Estimate total future reward givens; a;

Previous control actions
(value function)

Predicted system output from model
given the proposed control actions d nd/or

H/&-_O—?—O\
| "™
T RS Find a map between s; and first optimal action a;

- olicy gradient
output Prediction Horizon (N,) (p Yd)

Previous system output

y
\

Control Horizon (N)

1 L1 N R N S R N DG B
t1 t t+l t+N t+N,

s’] Model Predictive Control: Analogies to Model-free RL
A4 B

Immediate Past —> Possible Future

(data sent to controller) (at each time step, iterate through the next
series of proposed actions until the

m predicted system output is acceptable)
Measured disturbance F . .
W Instead, model-free RL methods try to estimate aspects of this

Actions proposed by controller
to achieve desired output
~\

Estimate total future reward givens; a;

Previous control actions
(value function)

Predicted system output from model
given the proposed control actions d nd/or

H/&-_O—?—N
| "™
T RS Find a map between s; and first optimal action a;

O olicy gradient
output Prediction Horizon (N,) (p Yd)

Previous system output

y
\

Control Horizon (N)

: : t-.ll : t'+1 — tLN — tLN * RLcan be thought of as trying to learn the step for optimization over future time ho
! (choose optimal action at time t to maximize reward / minimize cost over entire futur

| Z4 * Without time-dependence, becomes optimization over an online system model
(as we often use in accelerators)

Is‘) Where in accelerators might one want to use RL?
W44 B

Cases where time dependencies matter relative to control actions
(e.qg. rf control, slow time delays etc)

Learning an optimization algorithm
episode length becomes number of steps allowed

Control / fast switching between setups:
e.g. trajectory control

e.g. phase space shaping inverse model = add fine tuning with RL

s’] Example: Backprop through model to learn policy
QYA

Goal: Rapid switching between energies (with appropriate match into undulator) for a compact THz FEL

desired electron beam characteristics at the
entrance of the undulator

Beam Energy

suggested machine settings to obtain the
requested electron beam characteristics

RF Phase

. A
Emittances (¢,) Neural
| oy '\L Network

|Beta Function Values (8,) |/: Controller

o

\‘{ Solenoid Strength |

| Alpha Function Values (a,) /

*{ 5 Quadrupole Settings l

X

Compact, THz FEL design based on previously operational TEU-FEL

cathode

N TN
\

e
CW X W) ' .
). &

B8 e ©

quadrupoles

U

photoinjector undulator

Edelen et al., NeurlIPS 2017; IPAC'18

Variable Setting

Q1

Q2

Q3

Q4

@5

Gun Solenoid Strength
Gun RF Phase

Gun RF Power

ﬂ“ Example: Backprop through model to learn policy
QLAY

Goal: Rapid switching between energies (with appropriate match into undulator) for a compact THz FEL

desired electron beam characteristics at the
entrance of the undulator

Beam Energy RF Phase
| Emittances (¢,) '\: Neural é

Network
- >
|Beta Function Values (;3”) |/1 Controller \‘i Solenoid Strength |

suggested machine settings to obtain the
requested electron beam characteristics

*{ 5 Quadrupole Settings l

| Alpha Function Values (a,) /

Compact, THz FEL design based on previously operational TEU-FEL

cathode
{ ¥ X

P g
j‘ﬁ,/ N

I

€ >
XX X)) INEENEENEN
S88s 1 11} 0

quadrupoles undulator

photoinjector

Variable Setting

Q1
Q2
Qs
Q4
Q5

Gun Solenoid Strength

Gun RF Phase
Gun RF Power

Get Training Data from Simulation

b Optimizer _ Left out some
—— settings
Physics s energy ranges

p Simulation

repeat for different target energies

|

Train Forward and Inverse NN Models

converged samples

all samples (optimalisettings) Leave out one Su pe rvised
Forward Inverse energy range pre-tra ini ng
Model Model for validation
lniﬁal
Policy

Edelen et al., NeurlIPS 2017; IPAC'18

s«n Example: Backprop through model to learn policy
QVVE

Goal: Rapid switching between energies (with appropriate match into undulator) for a compact THz FEL

desired electron beam characteristics at the
entrance of the undulator

Beam Energy RF Phase
| Emittances (Ex,y) '\: Neural

-
5| Network —
| Beta Function Values (8,) |/1

3 Coicier \‘{ Solenoid Strength |
| Alpha Function Values (a,) /

suggested machine settings to obtain the
requested electron beam characteristics

cathode i
ED 6B GB G B
Igssss [13— »

L\ JI\ v

photoinjector quadrupoles undulator

Compact, THz FEL design based on previously operational TEU-FEL

Variable Setting

Q1

Q2

Q3

Q4

@5

Gun Solenoid Strength
Gun RF Phase

Gun RF Power

*{ 5 Quadrupole Settings |
Get Training Data from Simulation

beam e .
parameters \ [_ | settings
. <

p

Left out some
energy ranges

repeat for different target energies
Train Forward and Inverse NN Models

converged samples
all samples

(optimal settings) Leave out one Su pe rvised
energy range) L
for validation pre-training

Edelen et al., NeurlIPS 2017; IPAC'18

Use backprop through model while exploring new regions of parameter space

- periodically update model

NN Control Policy Update

Batch of — ' Syt |
. HREDAT S [p'—> costC(p,p’s)
(frozen) add (s', p') to database D
Every n™ iteration, take batch of s’ p' sampled from D,
run through physics simulation, and update the model
\. J

p: — target beam parameters

s' — predicted optimal settings
p' — predicted beam parameters
Cost:

difference between p' and p,

pendlize loss of transmission
penalize higher magnet settings

s’] Example: Backprop through model to learn policy
QYA

Goal: Rapid switching between energies (with appropriate match into undulator) for a compact THz FEL

desired electron beam characteristics at the
entrance of the undulator

suggested machine settings to obtain the
requested electron beam characteristics

RF Phase

Beam Energy
: A
Emittances (¢,) Neural
| . '\‘ Network

Controller

| Beta Function Values (8,) |/:

o

\‘{ Solenoid Strength |

| Alpha Function Values (a,) /

*{ 5 Quadrupole Settings l

Variable Setting

|i) d

Compact, THz FEL design based on previously operational TEU-FEL 01

cathode

NN
J

&
(X) ' .
(IO

N

S S
a5
)

U

photoinjector

>

quadrupoles

Q2
Q3
IR NNEN Q4
Gun Solenoid Strength
Gun RF Phase
Gun RF Power

undulator

0.7 4

o o o
- w (-3

B« Im/rad]

o
w

0.2

0.14

— gmulated
— predicted

Example from
running simplex on
the simulation

- ~ 170 iterations
to converge for
new energy target

0 25 S0 75 100 125
Iteration Number

Edelen et al., NeurIPS 2017 ; IPAC'18

150 175 200

NN policy canreach @y, =0 By, = 0.106

in one iteration for new target energies

Train MAE wTrain STD

Parameter

v, [rad] 0.012 0.075
v, [rad] 0.013 0.079
B, [m/rad] 0.008 0.004
By [m/rad] 0.014 0.011

u[s Example: Trajectory Control

Work with C.Tennant and D. Douglas, JLab

Fast Switching Between Trajectories

. High-voltage
- 76 BPMs, 57 dipoles, 53 quadrupoles n,nmr.mgun\j/ ,,(.:\;.(.);u:{.‘»l.\
- (Ol ev)
- o . Injecto S #. ,

- Traditional approach has never worked (linear response matrix)

- Rely on a few experts for steering tune-up r " & “,l\
- Want to specify small offsets in trajectory at some locations ‘;;v f’ i
Didn’t initially have an up-to-date machine model available & | _\\:' P
W 4 < ‘
& \
,//‘:* “‘I’f'i;t‘ji’/l\."’ ‘:
Learn responses (NN model) from tune-up data and o {‘ ’ ,J:
dedicated study time: L g 2 2
dipole + quadrupole settings = predict BPMs + g ol . x‘" g & °¢\¢§°’
transmission N : o
: . JLab

beam dump _#
Train controller (NN policy) offline using NN model: \ ‘?,-"

\

desired trajectory > dipole settings 'f;
(and penalize losses + large magnet settings) W e
\'&Rv irculation

Edelen IPAC'18

”[S Example: Trajectory Control

Preliminary Results:

Fast Switching Between Trajectories ===t/

Training Set: 0.07 mm MAE 0.09 mm STD

Main anticipated advantage of NN over standard approach: Validation Set: 0.08 mm MAE 0.07 mm STD
Test Set: 0.08 mm MAE 0.03 mm STD

Adaptive control policy > adjust without interfering with

operation for response measurements as often? Controller: random initial states = on average

within 0.2 mm of center immediately

Handling of trajectories away from BPM center (nonlinear) = e

51| — Predicted

Modeling Example
al (randomly selected a BPM
out of the data set to plot)

But, need to quantify this ...

Learn responses (NN model) from tune-up data and

dedicated study time:
dipole + quadrupole settings > predict BPMs +

transmission

BPM Reading [mm]
N

Train controller (NN policy) offline using NN model:
desired trajectory = dipole settings Al
(and penalize losses + large magnet settings)

0 200 400 600 800 1000
Sample Number (Scanning over Magnet Settings)
Edelen IPAC'18

I“{g Limitations of Model-Based RL
L<AA4 A

* Need a model!
* May not have one
* Can be harder to learn than policy

 Model setup
* How expressive?
* How fast?

« Model errors 2 how to handle where model is
confident but wrong

Easy policy, difficult model

 Need a good model, but a good model does not
guarantee a good policy!

Iﬂ‘) Value-Based Methods: Temporal Difference Learning
QVVE

How to learn a value function from experience [i.e. (state, action, reward) tuples]?

Update value function according to gradient descent at the end of an episode: V(St) — V(St) + « [Gt — V(St)}

Ih") Value-Based Methods: Temporal Difference Learning
QVVE

How to learn a value function from experience [i.e. (state, action, reward) tuples]?

Update value function according to gradient descent at the end of an episode: V(St) — V(St) + « [Gt — V(St)}

Bootstrap by using the next estimate of the value function as an approximation for Gt:

—_

V(S,) « V(S:) + o [Rt+1 oS e — V(St)]

— Temporal Difference Equation TD(0)

Q(St, At) + Q(S¢, Ar) + Oé[RtH + YQ(St+1, At+1) — Q(S:, At)]

Ih"fs Value-Based Methods: Temporal Difference Learning
QVVE

How to learn a value function from experience [i.e. (state, action, reward) tuples]?

Update value function according to gradient descent at the end of an episode: V(St) — V(St) + « [Gt — V(St)}

Bootstrap by using the next estimate of the value function as an approximation for Gt:

—_

V(St) - V(St) —+ « [Rt+1 —+ ’}/V(SH_l) — V(St)]
— Temporal Difference Equation TD(0)

Q(St, At) + Q(S¢, Ar) + Oé[RtH + YQ(St+1, At+1) — Q(S:, At)]

The error estimate is known as the TD error:

0t = Rey1 + YV (Se1) — VI(S)

Ih"fs Value-Based Methods: Temporal Difference Learning
QVVE

How to learn a value function from experience [i.e. (state, action, reward) tuples]?

Update value function according to gradient descent at the end of an episode: V(St) & V(St) + o [Gt - V(St)}

Bootstrap by using the next estimate of the value function as an approximation for Gt:

—_

V(St) - V(St) —+ « [Rt+1 —+ ’}/V(SH_l) — V(St)]
— Temporal Difference Equation TD(0)

Q(St, At) + Q(S¢, Ar) + Oé[RtH + YQ(St+1, At+1) — Q(S:, At)]

The error estimate is known as the TD error:

515 — Rt+1 + ")/V(SH_l) — V(St)
The value function can be written as:

Vr(8) = EAGy | Sp=4]
= E[Rir1 + 7Giy1 | Se=$]
= Ex|Rts1 + Y0r (St41) | St=35]

Is{s Value-Based Methods: Temporal Difference Learning
QVVE

How to learn a value function from experience [i.e. (state, action,

reward) tuples]?

Update value function according to gradient descent at the end of an episode: V(St) v V(St) + « [Gt s V(St)}

Bootstrap by using the next estimate of the value function as an approximation for Gt:

V(S,) « V(S:) + o [Rt+1 oS e — V(St)]

Q(St, At) + Q(S¢, Ar) + Oé[RtH + YQ(St+1, At+1) — Q(S:, At)]

The error estimate is known as the TD error:

515 — Rt+1 + ’}/V(St+1) — V(St>
The value function can be written as:

Vr(8) = EAGy | Sp=4]
= E[Rir1 + 7Giy1 | Se=$]
= Ex|Rts1 + Y0r (St41) | St=35]

—_

— Temporal Difference Equation TD(0)

Tabular TD(0) for estimating v,

Input: the policy 7 to be evaluated
Algorithm parameter: step size a € (0, 1]
Initialize V'(s), for all s € 8T, arbitrarily except that V (terminal) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:
A < action given by 7 for S
Take action A, observe R, S’
V(S) «+ V(S)+ a[R +V(S') — V(S)}
S« S

until S is terminal Sutton, 1998

Ihu } On-policy vs. Off-policy Learning
W44 A

On-policy — need new samples / retrain whenever policy is changed
(e.g. policy gradients)

Off-policy — can improve policy without obtaining new samples from that policy
(e.g. Q-learning)

Sarsa (on-policy TD control) for estimating Q = ¢.

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily except that Q(terminal, -)

Loop for each episode:
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’ I
| Choose A’ from S’ using policy derived from @ (e.g., e-greedy))
1 Q(S, 4) « Q(S, A) + a[R +1Q(S, &) — Q(S, A)] |
1S 8" A« A |

untll S is termlnal

=0

Q-learning (off-policy TD control) for estimating 7 ~ T,

Algorithm parameters: step size a € (0, 1], small ¢ > 0
Initialize Q(s,a), for all s € 8T, a € A(s), arbitrarily except that Q(terminal,)

Loop for each episode:
Initialize S
Loop for each step of episode: =~~~
[Choose A from S using policy derived from Q (e.g., e-greedy)
ITake action A, observe R, S’

|
|
'Q(S Al = Q(S A) +O<[R+7maXaQ(S a) — Q(S, A)] :

until S is terminal

=0

R=-1
Safer path
Optimal path I 1
| o
S The Cliff G
R=-100
Sarsa
25 -
Sum of _5,.
rewards Q-learning
during
episode 75]
-100 T I . T 1
0 100 200 300 400 500
Episodes

Q learning will converge to the optimal policy,
but falls off the cliff a lot in the process

Figures from Sutton & Barto, 1998

Mnih et al., Playing Atari
with Deep Reinforcement
Learning(2013)

E-greedy policy +
Q-learning

Experience replay

CNN layers in Q-function
to analyze the board

OO0 0-% -3
SECTOR ©O 1

B. Rider | Breakout | Enduro | Pong | Q*bert | Seaquest | S.Invaders
Random 354 1.2 0 -204 157 110 179
Sarsa [3] 996 9:2 129 —19 614 665 271
Contingency [4] 1743 6 159 —17 960 723 268
DQN 4092 168 470 20 1952 1705 581
Human 7456 31 368 -3 18900 28010 3690
HNeat Best [8] 3616 52 106 19 1800 920 1720
HNeat Pixel [8] 1332 4 91 —16 1325 800 1145
DQN Best 5184 225 661 21 4500 1740 1075

HNeat —hand-engineered features

Breakout, Enduro and Pong > human
Others require policies over long timescales

https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf

Isl) Deep Q-Learning Tips
CLVAY

Can be difficult to stabilize = best to test on simple problems first
Use large replay buffers to help stabilize learning
. Takes time to converge = will look random for awhile

If using E-greedy policy, start with high €

Islls Deep Deterministic Policy Gradients (DDPG)
\=AA A

Lillicrap et al., Continuous Control with Deep
Reinforcement Learning, (2016)

Silver et al., Deterministic Policy Gradient Algorithms,

(2014)

Main elements:
* Learn Qvalues through experience replay buffer

* Update policy via Q function estimate + backprop

* Use target networks to stabilize learning
- time-delayed versions of each network

* Ornstein-Uhlenbeck process to add noise to the
action outEut for exploration
(Uhlenbeck & Ornstein, 1930)

0% : Q network

0" : Deterministic policy function
9e" . target (Q network

oL target policy network

Voud(0) = V,Q(s,a)Vguu(s|6")

09" «— 109 4+ (1 — 7)0<
0" — 70" + (1 — 7)o"

where 7K1

p'(se) = p(se]0)) + N

https://arxiv.org/pdf/1509.02971v6.pdf
http://proceedings.mlr.press/v32/silver14.pdf

Recap: High-Level View

Generate Samples Estimate Model or fit Q4 (s,a) (actor-critic, Q-learning)
(interact with environment) Value Function estimate p(s'|s, a) (model-based)

Improve Policy

0 < 0+ aVeJ(0) (policy gradient)

7(s) = argmax Q4 (s,a) (Q-learning)
optimize mg(als) (model-based)

Experience Replay Buffer Saves buffer of previous samples
- helps stabilize learning by avoiding correlated sequences

Partially adapted from S. Levine

uls Sample Efficiency

off-policy < » on-policy
More efficient Less efficient
(fewer samples) (more samples)
—
model-based model-based off-policy actor-critic on-policy policy evolutionary or
shallow RL deep RL Q-function style gradient gradient-free
learning methods algorithms algorithms

Chart from S. Levine

s“) Sample Efficiency
A4 B

gradient-free methods
(e.g. NES, CMA, etc.)

:

fully online methods
(e.g. A3Q)

#

policy gradient methods
(e.g. TRPO)

;

replay buffer value estimation methods
(Q-learning, DDPG, NAF, etc.)

:

model-based deep RL
(e.g. guided policy search)

:

model-based “shallow” RL
(e.g. PILCO)

Slide from S. Levine

Evolution Strategies as a
Scalable Alternative to Reinforcement Learning

Cheetah (9-DoF /6-dim. Actions)

Tim Salimans ' Jonathan Ho' XiChen' Ilya Sutskever'

half-cheetah (slightly different version)

Learning performance E

Wang et al. ‘17

100,000,000 steps
(100,000 episodes)

TRPO+GAE (Schulman et al. ‘16) \ 10,000,000 steps (~ 15 days real time)

(10,000 episodes)
(~ 1.5 days real time)

half-cheetah

¢ o I 1,000,000 steps
P » (1,000 episodes)
- == (~ 3 hours real time)
Guetal. 16 s ==
5 ::E(Z;MDGPS

about 20 minutes of

Avg final distance

0.10) \ "\v\
cart-pole cart-double-pole unicycle B M i
ot o & o » .| experience on a real
trials <10 20-30 ~ 20
experience ~20s ~ 60s-90s ~20s-30s 000 10X ga p ro bot
parameter space R L] R*® ~0.05 . .

10° 10! 10? 10 10 10°
samples

Chebotar et al. ’17 (note log scale)

Is‘] Choosing different RL methods
CLEE)

are you learning
in a simulator?

how patient
are you?

model-based
RL (GPS, etc.)

Various Experiments

Including the policy input

Slide from S. Levine

is simulation cost
negligible compared
to training cost?

value-based
methods (e.g.
Q-learning)

BUT: if you have a
simulator, you can
compute gradients
through it — do you need
model-free RL?

I b

Policy gradient &
actor-critic
(TRPO, PPO, A3C)

Iteration O

Model-based RL

Possible transfer between tasks

Model can be harder to learn than policy

Don’t directly optimize for the task at hand; no
guarantee that better model will translate to better

policy

Typically more sample-efficient

4 N\
Tradeoffs: A ti bout . t:
’ . . g en pace Invaaers i
User-friendliness/stability Stochastic/deterministic £ o
z 8 2.0
2 15
Where the main difficulty is: » : 5 [o N
Estimating model? 3 s f .
Estimating policy? 0 50 100 150 200 0 50 100 150 200
Obtaining samples?
\, J
Policy Gradient

Directly optimizing task at hand

Not sample efficient

Value Functions

Minimize error, may not accurately
represent real expected reward

No convergence guarantees

Can be quite sample efficient

L

Time Pilot Zaxxon

DQN estimate

W

Double DQN estimate

Double DQN true value
DQN true value

© N B O o

0 50 100 150 200 O 50 100 150 200
Training steps (in millions)

Easy policy, difficult model

Ih"fs Example: FEL taper optimization
A4 b

LCLS Undulator Taper Configuration

3sit [T _‘ o=
asf | T T AR
3.49 ¥
348
Wu et al., Recent Online Taper Optimization at LCLS,

- 0 g

1o et
3.42 oy
" Tager

| |
=)
Compared a variety of optimization methods, including e
policy gradient RL Zig-zag
taper .
T reL '
* Variables: taper magnets . pulse L
energy
« Target: FEL pulse energy . “ | I
g Continuous 25 s
» RLfound a “zig-zag” taper profile that had 2x pulse ¢ | 2f pem—
energy i
h]hllluil.LM A os

o 500 1000 1500 2000

https://accelconf.web.cern.ch/fel2017/papers/tub04.pdf

q‘n Example: offline training with a model
Q.Y

.

Solenoid 1; 0.286m
kew Quad 1; 2.836m
kew Quad 2; 2.948m
kew Quad 3; 3.099m

LINAC; 1.716m
Quad 4; 05m

Expert hand-tuning: Round-to-flat beam transforms are
10 — 20 minutes challenging to optimize

Valve
Steering 4
®»
o
g

2

YAG1 + Mirror; 0.626m

Window (empty)

Steering 1

Mirror

-

quads used for flat beam screen location

Took measured scan data at UCLA Pegasus
beamline = trained neural network model

. L . Genetic
to predict fits to beam image Algorithm
X rms
Tested online multi-objective optimization : IYTmS .
. . Flat B ds (3 pixel intensity
over model (3 quad settings) given present 2t Beam Quads (3) sigma xy

7

, x,y centroids

Initial GP RL
Beam result for one =
full day after last
training data

SLAC + UCLA collab: Cropp, in preparation

readlngs of other Inputs Readings for other inputs'

(at start of optimization only)

Also applied reinforcement learning (DDPG):

- Trained offline using learned model

- Transferred to machine for retraining
(6 months later)

s‘] Example: HGHG FEL Optimization
QVVE

F. O’Shea et al., Policy gradient methods for free-electron laser and terahertz source
optimization and stabilization at the FERMI free-electron laser at Elettra, (2020)

at FERMI for two tasks

mechanical delay stage for a seed laser

radiation produced
®* Used same agent for the two different tasks

56 (1) a=0.05

100

FEL energy

Compared a variety of policy gradient methods for optimization and stabilization
Settings: three kinds of magnets, piezo motors for laser alignment, and a

Targets: the output energy of an HGHG FEL and the amount of Terahertz

(2)a=0.10

Seed Delay (ps)

80.0

62.5

Dispersion Current (A)

27.5

10.0

-2406.5

-2406.8

-2407.3

-2407.6
0 116 232 348 464 0 134 268 402 536
step step

dispersive strength + laser delay
- black lines are human settings

https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.23.122802

hu) Example: Trajectory Control at CERN
A4 b

S
o

Kain et al., Sample-efficient reinforcement learning for CERN accelerator
control (2020)

N
o

no. iterations

o

0.0

€ -0.5
Aim: trajectory control for AWAKE and LINAC4 2 10 — final
e« ~——— initial
. -1.5 ——— targ?et
. . . . 0 25 50 75 100 125 150 175 200
Used Normalized Advantage Function (Q-learning variant) no. episode
0.6
100 0.5
Setup for AWAKE : il
0.3
21071 @
* 30 minutes training for 11 degrees of freedom 350 iterations) 02
0.1
* Reset to random position at start of episode (no more than 7mm RMS . -
offset — 2-3 x above normal) —oa
0 50 100 150 200 250 300 350
no. iteration
* Limited corrector step size to 300urad . .
online learning
Tested agent 3 months later and still had good performance E-02 -
" \. \\ A /// \\ ///'\\ \ _ I
WAYAW Ve wilc]
-0.4 \v,," -- target
0 5 10 15 20 25 30 35

no. episode

3 months after last training

https://journals.aps.org/prab/pdf/10.1103/PhysRevAccelBeams.23.124801

- Reward functions may not account for un-intuitive behavior or implicit values
- Classic example: reduce office paper consumption =2 solution is to kill all humans

-+ Big concern in Al safety, see

SCORE LS ™ 1URS0 READY

10500 -3 023
https://youtu.be/tIOIHko8ySg

“ We assumed the score the player earned would reflect the informal goal of
finishing the race, so we included the game in an internal benchmark designed to
measure the performance of reinforcement learning systems on racing games.
However, it turned out that the targets were laid out in such a way that the
reinforcement learning agent could gain a high score without having to finish the
course. This led to some unexpected behavior when we trained an RL agent to play
the game.

The RL agent finds an isolated lagoon where it can turn in a large circle and
repeatedly knock over three targets, timing its movement so as to always knock
over the targets just as they repopulate. Despite repeatedly catching on fire,
crashing into other boats, and going the wrong way on the track, our agent
manages to achieve a higher score using this strategy than is possible by
completing the course in the normal way. Our agent achieves a score on average
20 percent higher than that achieved by human players.”

https://openai.com/blog/concrete-ai-safety-problems/
https://openai.com/blog/faulty-reward-functions/

s“) OpenAl gym
QLY

OpenAl gym has standards for interfacing with different environments and makes it easy to build
your own environment:

Also has leaderboards with writeups of different solutions

Algorithms

Atari

Box2D

Classic control

MuJoCo

Robotics

Toy text

Third party environments ('

Classic control

Control theory problems from the classic RL literature.

Episode 6

Episode 1

Episode 1 CartPole-v1
Balance a pole on a cart.

Acrobot-v1
Swing up a two-link robot.

Episode 1 R

MountainCarContinuous-v0 Episode 1
Drive up a big hill with
continuous control.

MountainCar-v0
Drive up a big hill.

MountainCarContinuous-vO

A car is on a one-dimensional track, positioned between two "mountains". The goal is to drive
up the mountain on the right; however, the car's engine is not strong enough to scale the
mountain in a single pass. Therefore, the only way to succeed is to drive back and forth to
build up momentum. Here, the reward is greater if you spend less energy to reach the goal
Here, this is the continuous version.

e Environment details

e MountainCarContinuous-vO defines "solving" as getting average reward of 90.0 over 100 consecutive trials.
o This problem was first described by Andrew Moore in his PhD thesis [Moore90].

User Episodes before solve Write-up Video
Zhiging Xiao 0 (use close-form preset policy) writeup
Ashioto 1 writeup
Nextgrid.ai & 9 writeup Video
Keavnn 1 writeup

camigord 18 writeup

https://gym.openai.com/
https://github.com/openai/gym/wiki/Leaderboard

Iﬂ‘[s Questions?
A4 b

Ihuls Classic Textbooks
A4 b

« Miller, Werbos, Sutton, Neural Networks for Control,
(1990)

« Bertsekas and Tsitsiklis, Neuro-dynamic Programming, (
1996)

« Sutton and Barto, Reinforcement Learning: An Introduction,
(1996, 2018)

https://mitpress.mit.edu/books/neural-networks-control
http://athenasc.com/ndpbook.html
http://incompleteideas.net/book/the-book-2nd.html

