
Applications of unsupervised learning to 
accelerators

1

Presenter: R. Lehe
Day 8



Supervised vs unsupervised machine learning

Supervised:
• The training data contains 

inputs 𝒙 and labels 𝑦
• The aim is to predict the 

label 𝑦 for new inputs 𝒙

Example: spam detection

𝒙: representation of the text
of an email

𝑦: 0 = valid email
1 = spam

Unsupervised:
• The data only contains inputs 𝒙
• The aim is to find “interesting patterns”

in the data

Example: group a large number of recent news 
articles into several “trending topics”

𝒙: representation of the text of a news article

More vague ;  oftentimes, no ground truth or quantitative 
measure of how well the algorithm performs 



Outline

• Dimensionality reduction
• PCA
• Auto-encoders

• Clustering
• K-means
• DBSCAN

• Anomaly detection



Dimensionality reduction: overview

Example: prediction of accelerator properties

Input vector:
accelerator parameters

Supervised
ML model

Output vector:
final beam properties

Solenoid B field
Accelerating gradient
Accelerating phase
…

Energy
Bunch length
…



Dimensionality reduction: overview

Input/output vectors can often become very large (i.e. high-dimensional).
Some of that data can be redundant.

Supervised
ML model

Solenoid B field
Accelerating gradient
Accelerating phase
…

Energy
Bunch length
…

Image (pixels)
of the photocathode

Image (pixels)
of the beam 
on a phosphore screen

Temperature of 
each accelerator
elements …

Beam size
RMS angle
Emittance

Input vector: Output vector:



Issues with ML using high-dimensional vectors

• In principle, ML methods can deal with high-dimensional and redundant data.

But:
• Training is more expensive (esp. Gaussian process)
• More likely to overfit the training data



Dimensionality reduction: overview

Idea: reduce the size of the input/output that goes into the ML model.
Use compressed (”latent”) input/output vector that eliminates some of the redundant 
information and capture the essence of the data.

Supervised
ML model

Solenoid B field
Accelerating gradient
Accelerating phase
…

Energy
Bunch length
…

Image (pixels)
of the photocathode

Image (pixels)
of the beam 
on a phosphore screen

Temperature of 
each accelerator
elements …

Beam size
RMS angle
Emittance

Input vector: Output vector:

e.g. average
temperature

e.g. coarse
version of 
the image

e.g. only 
beam size
and RMS angle

Latent 
input vector:

Latent 
output vector:



Dimensionality reduction: overview

The discovery of the relevant “compressed features” need to be automated.

Supervised
ML model

Unsupervised 
ML model

Unsupervised 
ML model

Input vector: Output vector:



Dimensionality reduction: overview

Supervised
ML model

Input vector: Output vector:

Unsupervised 
ML model

Unsupervised 
ML model

Key point: the compression ML model (which eliminates some of the redundant 
parameters) can be trained on input/output only,
whereas supervised ML needs input/output pairs.

Trained on input 
vectors only

Trained on output 
vectors only

Trained on 
compressed
input/output pairs



Dimensionality reduction: overview

Dimensionality reduction models are trained by reproducing their input vector.

Step 1: train compression ML models Step 2: train supervised
model on compressed vector

Compression ML

Inverse model
(eventually 
discarded)

Input Latent space
Approximation of
the original input

Size (i.e. number of dimension)
is explicitly chosen before 
applying the training

Supervised
ML model

𝑋 𝑌 #𝑋



Other uses of dimensionality reduction

• Visualization:
Reduce the input space to a two-dimensional latent space, 
and plot the data in 2D

• Optimization/control on reduced number of parameters

Algorithms for dimensionality reduction:
PCA, ICA, NMF, auto-encoders, …



Principal component analysis (PCA)

Matrix
mult.

Matrix
mult.

𝑋 #𝑋

𝑌

• In PCA, the components of the reduced vector Y are obtained by a 
linear combination of the original components X (i.e. a matrix multiplication)

• The matrix is chosen so as to minimize the reconstruction error.

Reconstruction error:

E =
NX

i=1

DX

j=1

(Xij � X̃ij)
2

Sum over 
examples in
the dataset

Sum over 
features



Singular value decomposition (SVD)

𝑋 = 𝑈 𝑆 𝑉$Any matrix X can be decomposed as

X =

N x D
zero, except

on the “diagonal”

N: number 
of examples
in the dataset

D: number 
of features

U
S

𝑉!

N x D N x N
orthonormal
𝑈!𝑈 = 𝐼

D x D
orthonormal

𝑉!𝑉 = 𝑉 𝑉! = 𝐼

Singular values 𝜎" ≥ 0
sorted in decreasing order

𝜎!

𝜎"

𝜎#



Truncated SVD

X =

N x D

U
S

𝑉!

N x D N x N

D x D

$𝑋" =

N x D

U
𝑉!

N x D N x N

D x D

Approximation: 
only retain the L
highest singular values
(with L < D)

(Set the other ones to zero)

L



Truncated SVD

X =

N x D

U
S

𝑉!

N x D N x N

D x D

$𝑋" =

N x L

U

𝑉"!

N x D N x N

L x D

𝑆"

L

Contains the L
first lines of 𝑉!

Approximation: 
only retain the L
highest singular values
(with L < D)

𝑋 = 𝑈 𝑆 𝑉!

-𝑋# = 𝑈 𝑆# 𝑉#!



Truncated SVD

X =

N x D

𝑌
𝑉!

N x D

D x D

$𝑋" = 𝑌"

𝑉"!

N x D

L x D

Contains the L
first lines of 𝑉!

Approximation: 
only retain the L
highest singular values
(with L < D)

𝑋 = 𝑌 𝑉!

N x L

Contains the L
first rows of 𝑌

-𝑋# = 𝑌# 𝑉#!

It can be shown that:

𝑌#= 𝑋 𝑉#

Approximate 
low-dimensional 
representation of X



Projection onto principal components using truncated SVD

𝑉" 𝑉"!

𝑌!= 𝑋 𝑉! %𝑋! = 𝑌! 𝑉!"

𝑋 -𝑋#

𝑌#

𝑉"contains the L first rows of 𝑉, 
which is given by the SVD

The matrix that we were looking for is 𝑉".



Quantifying PCA: the explained variance

Variance of the 
reconstructed vector:
(assuming the mean 
of each component 
has been subtracted)

V ar(X̃) =
1

N

NX

i=1

X̃2
i,1 + ...+

1

N

NX

i=1

X̃i,D

Variance of first 
component

Variance of last 
component

V ar(X̃L) = Tr(X̃T
L X̃L)

= Tr(USLV
T
L VLS

T
LU

T )

= Tr(USLS
T
LU

T )

= Tr(SLS
T
LU

TU)

= Tr(SLS
T
L )

=
LX

i=1

�2
i

$𝑋" =

N x L

U

𝑉"!

N x D N x N

L x D

𝑆"

𝜎!𝜎#



Quantifying PCA: the explained variance

Variance of the 
original vector:

Explained
variance:

• PCA attempts to find the reconstructed vector that recovers as much as 
possible of initial variance. 

(i.e. it tries to project the initial vector onto the direction where the data varies the most)

• Because the 𝜎# are sorted in decreasing order, the first few terms in the sum
may already recover most of the initial variance.

V ar(X) =
DX

i=1

�2
i V ar(X̃L) =

LX

i=1

�2
i

L < D



How to use PCA in practice: scikit-learn

Initialization

Usage



How to use PCA in practice: pytorch

𝑉"

𝑌#= 𝑋 𝑉#

𝑉" contains the L first rows of 𝑉, 
which is given by the SVD

𝑋



Example: PCA in accelerator physics

Parameterization of the 2D transverse profile of a beam
(for the purpose of reconstructing the unknown input profile)

15-component
vector

A. Scheinker et al., arxiv:2102.10510 (2021)

The first 10 components:



Auto-encoders

Neural 
network

Neural
network

𝑋 #𝑋

𝑌

• Instead of using matrix multiplications (like PCA), auto-encoders use neural networks.

• The neural networks are trained (with backprop) to reduce the reconstruction error.
(i.e. the reconstruction error is the loss function)

Reconstruction error:

E =
NX

i=1

DX

j=1

(Xij � X̃ij)
2

Sum over 
examples in
the dataset

Sum over 
features



Comparison between auto-encoders and PCA

PCA:
• The latent features can only 

be linear combinations of input 
features.

• Only one tuning parameter:
dimension of the latent space

Auto-encoder:
• The latent features can be complex non-

linear combinations of input features.

• Many tuning parameters:
• Architecture: fully-connected, CNN, etc.
• Number of layers, neurons, etc.
• Training parameters: epochs, learning 

rate, etc.

Input Latent space



Outline

• Dimensionality reduction
• PCA
• Auto-encoders

• Clustering
• K-means
• DBSCAN

• Anomaly detection



Clustering

• Aim: Find clusters of “similar” data points, within 
the dataset
• 2D/3D: can be done by eye, by a human
• N-D: impossible for a human

• Examples:
• News: group news articles into ”trending topics”
• Physics: group physical observations into different 

“physical regimes”

• The clusters are not known in advance.
This can be a tool for discovery.

Clustering



K-means: algorithm

Choose k initial points (e.g. randomly), called 
“centroids”

Then perform several iterations of
the following steps:
• Attribute each data points to 

the nearest centroid
• Move the centroid to the barycenter (or 

“mean”) of its data points

k=3, iteration #1



K-means: algorithm

Choose k initial points (e.g. randomly), called 
“centroids”

Then perform several iterations of
the following steps:
• Attribute each data points to 

the nearest centroid
• Move the centroid to the barycenter (or 

“mean”) of its data points

k=3, iteration #2



K-means: algorithm

Choose k initial points (e.g. randomly), called 
“centroids”

Then perform several iterations of
the following steps:
• Attribute each data points to 

the nearest centroid
• Move the centroid to the barycenter (or 

“mean”) of its data points

k=3, iteration #5

The algorithm stops when the centroids 
do not move significantly 
from one iteration to the next.  



K-means: practical consideration

• User needs to pick the number of clusters k in advance

• By construction, k-means struggles with non-convex clusters

• Can be sensitive to outliers
Results may depend on the positions of the initial centroids

A few k-means predictions:
(from scikit-learn.org)



K-means: scikit-learn interface



K-means: example in accelerator physics

• Simulations of the KARA storage ring 
(Karlsruhe Research Accelerator)

• The beam can interact with its own CSR 
radiation and develop micro-bunching instability

• Input to k-means (k=4): discretized 
longitudinal bunch profile

• k-means extracts 4 regimes

T. Boltz et al., “Studies of longitudinal dynamics in the micro-
bunching instability using machine learning”, IPAC2018, 
Vancouver, doi:10.18429/JACoW-IPAC2018-THPAK030

Typical beam density fluctuations 
for each regime

Transition between
different regimes
during a simulation:



DBSCAN

Pick a distance 𝜀 and a minimum 
number of neighbors 𝑛$#%

• Points that have at least 𝑛$#% neighbors within 
a distance 𝜀 are considered ”core points”.

• Core points that are within a distance 𝜀 of 
each other are part of the same cluster.

• None-core points that are within a distance 𝜀
of a a core points are also in the same cluster.

• Other points are considered outliers.

Intuitively: find areas of high density separated 
by areas of low density.

Neighborhood 
of size 𝜀



DBSCAN: practical considerations

• Users does not need to specify the number of cluster k in advance
but it is crucial to specify a proper 𝜀 and/or 𝑛/01

• Clusters can be any shape ; not necessarily convex

• Ability to predict outliers (i.e. do not belong to any cluster)

A few DBSCAN predictions:
(from scikit-learn.org)



DBSCAN: scikit-learn interface



Outline

• Dimensionality reduction
• PCA
• Auto-encoders

• Clustering
• K-means
• DBSCAN

• Anomaly detection



Anomaly detection: overview

Idea: automatically detect “outliers” in the data.
(i.e. data points that do not “look like” the rest of the data)

Applications:

• For data analysis: 
Automatically clean-up large amount of data (too large to be feasible by 
hand) e.g. faulty measurement devices in a large experimental campaign.

• During operation: 
Detect anomalous accelerator behavior, in order to raise an early warning
(e.g. danger of damaging equipment, risk of having to stop the operation)



Anomaly detection: definition

In ML terminology, “anomaly detection” is an unsupervised methods

• Applies when it is difficult to label anomalous behavior.
(e.g. too time-consuming for a human to go through the whole data)

• If most of the data can be labeled (”normal” vs “anomalous”):
It is better to use supervised learning (classification) than anomaly 
detection methods. (e.g. using neural networks)



Anomaly detection example: detecting faulty BPM in LHC

Beam Position Monitors (BPM) record the position of the 
beam at each turn, for 512 different locations on the ring

Timeseries data at each of the 512 locations

However, BPMs sometimes produce incorrect readings.
Faulty readings are identifiable by a human. Various occurences:
- high noise
- unphysical spikes
- incorrect tune frequency 
but it is tedious to verify every single BPM by eye.

E. Fol, CERN thesis 2017-336 (2017)



DBSCAN
E. Fol, “Detection of faulty Beam Position Monitors”, ICFA Beam 
Dynamics Mini-Workshop: Machine Learning Applications for 
Particle Accelerators, 2018 (https://indico.fnal.gov/event/16327/)

ε= 0.3, MinPts = 80

• Extracted 3 representative features 
from each BPM timeseries

• Ran DBSCAN on this 3-dimentional input
to detect outliers



Isolation forest

Iteratively:
• Randomly select a feature
• Randomly select a split value

between the min and max of that 
feature

For each data point, record the 
number of splits that were need 
to isolated it from the others.

(Outliers typically need fewer splits.)

+ Repeat from scratch many times.
Each data point’s score is the average number of splits needed to isolate it.



Isolation forest: setting the decision threshold

• The anomaly score (average number 
of splits to isolate a point) can have 
arbitrary values

• One needs to set a threshold
that determines which points
are labeled as anomalous.

• This is often set by imposing 
that a given fraction of the data 
should be considered anomalous 
(The user needs to provide a 
“contamination” fraction.)

Anomalous



Isolation forest: accelerator example

• In order to benchmark the method: 
generated simulated BPMs signals and added 
anomalies on purpose to some of them.
(i.e. ground truth is known in this case)

• Pre-cleaned the data with an SVD-based method 
and extracted 3 features from each BPM signal

• Ran Isolation Forest for several values of the 
contamination parameter: 
Trade-off between removing good BPMs and 
missing bad BPMs

E. Fol et al. ”Detection of faulty beam position monitors 
using unsupervised learning”, PRSAB 23, 102805 (2020)

IF = Isolation Forest

(contam. = 0.01)



K-NN distance

• Anomality score = distance from kth 
nearest neighbor (in this case, a high 
score indicates a likely outlier)

• Motivation for using 𝑘 > 1:
an outlier may occasionally be close 
to another outlier by chance.

• Again, the user needs to set a threshold 
on the anomaly score (e.g. based on the 
expected contamination fraction)

Other method based on distances to neighbors: Local Outlier Factor (LOF)

k=4



Auto-encoders for anomaly detection

Neural 
network

Neural
network

𝑋 #𝑋

𝑌

Evaluate the reconstruction
error for each data point

Ei =
DX

j=1

(Xij � X̃ij)
2

use it as the data points’s anomaly score
+ set a threshold to determine which 
point should be considered anomalous 

Intuition: Outliers are rare/inexistent in the dataset that was used to train the auto-encoder.
Therefore, the auto-encoder has lower accuracy when reconstructing outliers. 



Auto-encoders: accelerator examples

E. Fol, CERN thesis 2017-336 (2017)

• Evaluation on real, experimental data (no ground truth available)
BPMs were labeled as anomalous (”bad”) or normal (“good”) by another method (SVD clean)

• Mixed results:
• Some anomalous BPMs give low reconstruction error
• But manually inspecting the BPMs that have high reconstruction error 

reveals anomalous BPMs that were not detected by SVD clean.

Number 
of BPMs

Reconstruction error in auto-encoder

Possible threshold for 
anomalous BPMs



Any questions?

• Dimensionality reduction
• PCA
• Auto-encoders

• Clustering
• K-means
• DBSCAN

• Anomaly detection


