
Uncertainty quantification
in Machine learning

1

Presenter: R. Lehe
Day 8

Outline

• Uncertainty in ML: definition and motivation

• Methods to estimate uncertainty
• Gaussian processes: reminder
• Ensemble methods
• Monte Carlo drop-out
• Bayesian neural networks
• Quantile regression

• Evaluating and calibrating uncertainty

Uncertainty in Machine Learning

Idea: The ML model should output a prediction and the corresponding uncertainty.

The uncertainty indicates the probable interval within which an actual evaluation may be.
(e.g. actual measurement or simulation)

e.g. neural networks e.g. Gaussian processes

Motivation for accelerators: optimization

In the context of model-based optimization of accelerators:
uncertainty allows to balance exploration and exploitation.
(e.g. by calculating upper confidence bound, expected improvement)

Motivation for accelerators: safe operation

For safe operation of accelerators:
uncertainty helps ensure that important constraints are not violated.

Maximum acceptable loss

Safe parameter exploration

Scope of this lecture

• Reliably evaluating the uncertainty in ML is very much still a topic of
research.

• This lecture will describe different well-known methods, so that you
can more easily navigate the corresponding ML literature in the future.

Uncertainty in Machine learning

Several representations for the uncertainty:

Standard deviation
(Single scalar)

Probability distribution
(Full function)

𝜎

𝜎

The probability distribution is a much more complete description,
but few ML method provide it.

Epistemic and aleatoric uncertainty

Evaluations can often be modeled as:

Underlying function
always gives the same
result, for a given x

Intrinsic noise
value changes for
each evaluation

f(x) = f̃(x)+⌘

Epistemic uncertainty:
uncertainty on underlying function

• increases when making predictions
far from known data

• decreases when acquiring more data

Aleatoric uncertainty:
estimates the amplitude
of the noise

Epistemic and aleatoric uncertainty

Depending on the application, one may or may
not want to include the aleatoric part:

Examples:

• Optimizing beam size,
with noisy beam size measurements:
the aim is to optimize the underling function ;
the aleatoric part should not be included.

• Keeping fluctuating beam loss under a threshold:
take into account aleatoric part, in order to evaluate
the “worst-case scenario”.

f̃

Outline

• Uncertainty in ML: definition and motivation

• Methods to estimate uncertainty
• Gaussian processes: reminder
• Ensemble methods
• Monte Carlo drop-out
• Bayesian neural networks
• Quantile regression

• Evaluating and calibrating uncertainty

Reminder on Gaussian processes

Given 𝑁 previous evaluations {𝒙!, 𝑦!}!"#,…,&, the
probability distribution of 𝑦(𝒙∗) at a new input 𝒙∗ is
predicted to be Gaussian: 𝑦 𝒙∗ ∼ 𝒩 𝑚 𝒙∗ , 𝜎(𝒙∗

m(x⇤) = k⇤T (K + �2
⌘I)

�1y

�2(x⇤) = k(x⇤,x⇤)� k⇤T (K + �2
⌘I)

�1k⇤ + �2
⌘

𝑘(. , .): chosen kernel function (e.g. SE: 𝑘 𝒙, 𝒙! = 𝜎"#exp(−
𝒙%𝒙! "

ℓ"
))

𝜎': estimated noise level

𝐾: matrix of size 𝑁×𝑁, defined by 𝐾() = 𝑘(𝒙(, 𝒙))
𝒚 ∶ vector of size 𝑁, containing evaluations 𝑦(
𝒌∗: vector of size 𝑁, defined by 𝑘(∗ = 𝑘(𝒙(, 𝒙∗)

Determined by hyperparameter tuning
(e.g. maximization of marginal log-likelihood)

{𝒙!, 𝑦!}!"#,…,&

𝑚(𝑥)

𝑚(𝑥) ± 𝜎(𝑥)

(Rasmussen & Williams, “GP for ML”, Eqns. (2.22)-(2.24))

Limitations of Gaussian processes

• Scales badly for high-dimensional input:
• Suffers from curse of dimensionality,

i.e. needs exponentially more data for high dimension
• As more data is added, computational cost scales as 𝑛)
• Difficulties capturing correlated input dimensions

(i.e. need many more hyperparameters in kernel)

• Inefficient for high-dimensional output:
(essentially need to build a separate GP for each output)

• Predicted probability distribution is always Gaussian.
Cannot predict distributions with long tails.

Outline

• Uncertainty in ML: definition and motivation

• Methods to estimate uncertainty
• Gaussian processes: reminder
• Ensemble methods
• Monte Carlo drop-out
• Bayesian neural networks
• Quantile regression

• Evaluating and calibrating uncertainty

Ensemble of neural networks

• Due to randomness in initialization and training,
each neural network has different weights,
and gives a different answer.

• Use the mean as the prediction
Use the standard deviation as the uncertainty

Regular neural network Ensemble of neural network (N=3)

Ensemble of neural networks

Easily scales to high-dimensional output

Use per-component mean and standard deviation

Ensemble: how to make the models different?

Use randomness in initialization and/or training data.

Several possible methods:

• Initialize weights of each network with a different random seed
(Train all networks on the same data.)

• Randomly divide the data into N partitions
Train each network on a different partition (with same initial weights)

• Different random initial weights and draw different random subsets of the data
(“Boostrap AGGregatING” or “bagging”)

Example: uncertainty on virtual diagnostic for beam current

measures beam
current profile

Ensemble of 16 independent neural
networks, trained with bagging:
• input: full IR spectrum
• output: 1d beam current profile

2 different
shots

O. Convery et al., arXiv:2105.04654v1 (2021)

(coherent diffraction radiation)

Outline

• Uncertainty in ML: definition and motivation

• Methods to estimate uncertainty
• Gaussian processes: reminder
• Ensemble methods
• Monte Carlo drop-out
• Bayesian neural networks
• Quantile regression

• Evaluating and calibrating uncertainty

Dropout neural network

For each neuron, randomly set the activation to 0 with fixed probability p
(generate different random draw for each evaluation of the neural network)

Drop-out neural network: repeated evaluations …

…

Regular neural network

Standard dropout vs. Monte-Carlo dropout

Standard Dropout:
(default behavior in pytorch, keras)

• Dropout is only applied during training

• During inference (i.e. for predictions),
the activations are multiplied by (1-p)
to represent the “average behavior”

During inference, repeated evaluations with
the same input x give the same result.

Monte-Carlo dropout (MC dropout):

Dropout is applied both during
training and inference.

During inference, repeated evaluations
with the same input x give different results.

Use the mean as the prediction
Use the standard deviation as the uncertainty

Outline

• Uncertainty in ML: definition and motivation

• Methods to estimate uncertainty
• Gaussian processes: reminder
• Ensemble methods
• Monte Carlo drop-out
• Bayesian neural networks
• Quantile regression

• Evaluating and calibrating uncertainty

Bayesian neural networks

• Corresponds to a whole family of methods, where:
• Weights are randomly drawn from a probability distribution,

for each evaluation.
• The probability distribution is tuned during training,

according to Bayesian rules.

• As for drop-out, the prediction and uncertainty are evaluated by
averaging over repeated evaluation of the network.

• Here we focus on one type of Bayesian neural network:
“Bayes by Backprop”, Blundell et al., arXiv:1505.05424 (2015)

Bayes by Backprop: inference

Regular neural network:
Weights are fixed.

Figures adapted from
Blundell et al., arXiv:1505.05424 (2015)

Bayes by backprop:
Weights are drawn from Gaussian distributions.
The Gaussian distributions are fixed during inference,
but the weights change (randomly) for each evaluation.

Each weight 𝑤! has a different Gaussian distribution,
parameterized by 𝜇!, 𝜌!:

wi = µi + �i✏i
✏i ⇠ N (0, 1) �i = log(1 + e⇢i)

…

Bayes by Backprop: training

Regular neural network:
The weights themselves are updated.

w0
i = wi � ↵

@L
@wi

Loss function:
Average error over the training data set

Neural network
prediction

Number of examples
in training set

Bayes by Backprop:
The parameters of the probability
distribution (𝜇! and 𝜌!) are updated.

µ0
i = µi � ↵

@L̃
@wi

+
@L̃
@µi

!

⇢0i = ⇢i � ↵

@L̃
@wi

✏i
(1 + e�⇢i)

+
@L̃
@⇢i

!

Step 1: Draw random weights

Step 2: Update parameters

wi = µi + ✏i log(1 + e⇢i)

✏i ⇠ N (0, 1)

L̃ =
1

N

NX

j=1

(yj � fw(xj))
2 +

1

N

0

B@
X

i

log

0

B@
e

(wi�µi)
2

�2
i

�i

1

CA� log(P0(w))

1

CA

𝑃': Prior on the weights

L =
1

N

NX

j=1

(yj � fw(xj))
2

Bayes by Backprop: ELBO loss function (“evidence lower bound”)

L̃ =
1

N

NX

j=1

(yj � fw(xj))
2 +

1

N

0

B@
X

i

log

0

B@
e

(wi�µi)
2

�2
i

�i

1

CA� log(P0(w))

1

CA

Accuracy term:
• Depends on the training data
• Makes the neural network fit the data
• Amplitude stays roughly constant when

increasing the number of training
examples N

Regularization term:
• Independent of the training data
• Tends to make the Gaussian distribution of

weights similar to the prior
(Typical prior: Gaussian mixture)

• Amplitude decreases when increasing the
number of training examples N

As more training data is added (N increases), the Gaussian distribution
on the weights departs from the prior and fits the training data.

P0(w) / ⇧i

⇡
e�w2

i /�
2
1

�1
+ (1� ⇡)

e�w2
i /�

2
2

�2

!

Bayes by Backprop: summary

Training:
Tune the Gaussian probability
distribution of the weights

µ0
i = µi � ↵

@L̃
@wi

+
@L̃
@µi

!

⇢0i = ⇢i � ↵

@L̃
@wi

✏i
(1 + e�⇢i)

+
@L̃
@⇢i

!

Inference:
Draw random weights for each evaluation
Use mean and standard deviation to
evaluate prediction and uncertainty

wi = µi + ✏i log(1 + e⇢i)

✏i ⇠ N (0, 1)

Bayesian neural network: practical considerations

Compared to regular NN:
• Requires 2x more parameters

(𝜇!, 𝜌! instead of 𝑤!)
• Added stochasticity during training

due to random draw of weights
• Training is more difficult:

e.g. much more sensitive to
hyperparameters, such as the prior

Compared to Gaussian processes:
• Need to tune training hyperparameters

(learning rate, number of epochs, etc.)
• But scales better to high dimension

Bayesian neural networks: theory

• Default assumption for probability of data, conditioned on the weights:

• The probability of the weights, conditioned on the data, can be found by Bayes
theorem:

P ({xi, yi}|w) / exp

0

@�
X

j

(yj � fw(xj))
2

1

A

P (w|{xi, yi}) =
P ({xi, yi}|w) P0(w)

P ({xi, yi})
Prior on the
weights 𝒘

Prior on data
(often ignored, because it
does not depend on 𝒘)

Aim: find probability distribution of the weights (given the training data),
so that weights 𝒘 can be sampled randomly for each evaluation

Bayesian neural networks: theory

• Default assumption for probability of data, conditioned on the weights:

• The probability of the weights, conditioned on the data, can be found by Bayes
theorem:

• Problem: Difficult to randomly sample weights 𝒘 from this probability distribution,
(due to the complex dependency on 𝒘 through the neural network function 𝑓𝒘)

P ({xi, yi}|w) / exp

0

@�
X

j

(yj � fw(xj))
2

1

A

Aim: find probability distribution of the weights (given the training data),
so that weights 𝒘 can be sampled randomly for each evaluation

P (w|{xi, yi}) / P0(w) exp

0

@�
X

j

(yj � fw(xj))
2

1

A

Bayesian neural networks: theory

• 𝒘 cannot be sampled from the true probability distribution

• 𝒘 is instead sampled from a simpler, approximate probability distribution 𝑞 𝒘, 𝜽 ,
that depends on hyperparameters 𝜽

e.g. “Bayes by backprop”:

Other Bayesian networks can be obtained by changing 𝑞 𝒘, 𝜽 e.g. “concrete dropout”

• The hyperparameters 𝜽 are tuned so that 𝑞 𝒘, 𝜽 becomes as close as possible to
the true probability distribution 𝑃 𝒘 𝒙!, 𝑦! (“variational approximation”)

P (w|{xi, yi}) / P0(w) exp

0

@�
X

j

(yj � fw(xj))
2

1

A

q(w,✓) = ⇧j
1p

2⇡ log(1 + e⇢j)
exp

✓
� (wj � µj)2

2 log(1 + e⇢j)2

◆

✓ = {µj , ⇢j}

Bayesian neural networks: theory

• “as close as possible”: tune 𝜽 to minimize the Kullback-Leibler divergence
between the true distribution P and the approximate distribution q

KL(q||P) =

⌧
log

✓
q(w|✓)

P (w|{yj ,xj})

◆�

w⇠q(w|✓)
P (w|{xi, yi}) / P0(w) exp

0

@�
X

j

(yj � fw(xj))
2

1

A

=

*
X

j

(yj � fw(xj))
2 + log(q(w|✓))� log(P0(w))

+

w⇠q(w|✓)

Corresponds to the modified loss function 6ℒ mentioned earlier.

Accuracy term Regularization term

Outline

• Uncertainty in ML: definition and motivation

• Methods to estimate uncertainty
• Gaussian processes: reminder
• Ensemble methods
• Monte Carlo drop-out
• Bayesian neural networks
• Quantile regression

• Evaluating and calibrating uncertainty

How to obtain the probability distribution

𝜎

𝜎

Standard deviation
(Single scalar)

Probability distribution
(Full function)

• The methods seen so far (ensembles, MC dropout, Bayesian NN) only provide
the standard deviation.

• By default, often assume that the corresponding distribution is Gaussian.
• What if the distribution of the data (e.g. noise) is significantly non-Gaussian?

Quantiles: a way to describe the probability distribution

Quantile definition:

Value 𝑞+ such that a fraction 𝜏
of the values 𝑦 are below 𝑞+

𝑦𝑞,% 𝑞(,%

P (y  q⌧) = ⌧
In terms of probability:

Quantiles allow to capture non-Gaussian distributions

Gaussian Log-normal (non-Gaussian)

Conditional quantiles

We would like an ML model that can predict the
position of the quantiles as a function of the input x. Conditional quantile definition:

Advantage: quantitative error bars that take into account non-Gaussian noise.

Value 𝑞+(𝑥) such that a fraction 𝜏
of the output values 𝑦 corresponding
to a given intput 𝒙 are below 𝑞+.

P (y  q⌧ |x) = ⌧
In terms of conditional probability:

𝑞,%(𝑥)
𝑞(,%(𝑥)

𝑞.,%(𝑥)
𝑞,/%(𝑥)

𝑞0,%(𝑥)

Quantile regression: loss function

The quantile 𝑞+ can alternatively be defined as the minimum of a specific loss function
(“pinball loss”):

L(q) = h`⌧ (y, q)i

⇡ 1

N

NX

i=1

`⌧ (yi, q)

`0.5 = 0.5|y � q|Note:

Sum over evaluated
data points

`⌧ (y, q) =

⇢
(1� ⌧)(q � y) if y  q

⌧(y � q) if y > q

“Demonstration” of the equivalence between the different definitions

• The loss function can be written as:

• The minimum 𝑞+ satisfies 1ℒ13 (𝑞+) = 0

L(q) = h`⌧ (y, q)i ⌘
Z 1

�1
dy p(y)`⌧ (y, q)

=

Z q

�1
dy p(y)⌧(q � y) +

Z +1

q
dy p(y)(1� ⌧)(y � q)

Z q⌧

�1
dy p(y)(1� ⌧) +

Z +1

q⌧

dy p(y)⌧(�1) = 0

Z q⌧

�1
dy p(y) = ⌧

✓Z q⌧

�1
dy p(y) +

Z +1

q⌧

dy p(y)

◆

P (y  q⌧) = ⌧

Z +1

�1
dy p(y) = ⌧

=

Z q

�1
dy p(y)(1� ⌧)(q � y) +

Z +1

q
dy p(y)⌧(y � q)

Quantile regression neural network
Train by minimizing the loss function

for a given 𝜏.

After training, the prediction of the neural network
𝑓(𝑥) corresponds to the 𝜏-quantile at point x.
(Use a separate neural network for each 𝜏.)

Standard neural network
Train by minimizing the loss function

After training, the prediction of the neural network
𝑓(𝑥) corresponds to the average of the data at point x.

Training quantile regression neural networks

L =
1

N

NX

i=1

(yi � f(xi))
2 L =

1

N

NX

i=1

`⌧ (yi, f(xi))

FEL example

unseen regionstest data

Input:
70+ quantities, incl:
• Strength of quadrupole and steering magnets
• Linac phases and amplitudes
• Laser properties in photo-injector
• Undulator properties

Output:
FEL pulse energy

Generalization to multi-dimensional output

Quantile regression neural network easily generalize to high-dimensional output:
sum over dimensions in cost function.

Input 𝑥

𝑦(#) 𝑦(() 𝑦()) e.g. beam size at
different locations L =

X

j

1

N

NX

i=1

`⌧ (y
(j)
i , f (j)(xi))

Sum over dimensions
of the output

Sum over data points

After	training,	𝑓(6)(𝑥) corresponds to the
𝜏-quantile for 𝑦(6) at point x.

e.g. accelerator
parameters

Example: uncertainty on virtual diagnostics for beam current
O. Convery et al., arXiv:2105.04654v1 (2021)

measures beam
current profile

Neural networks for 19 quantiles (0.05 to 0.95)
• Input 𝒙: full IR spectrum
• Output 𝑦(6): 1d beam current profile
Trained on ~3,000 shots

(coherent diffraction radiation)

Outline

• Uncertainty in ML: definition and motivation

• Methods to estimate uncertainty
• Gaussian processes: reminder
• Ensemble methods
• Monte Carlo drop-out
• Bayesian neural networks
• Quantile regression

• Evaluating and calibrating uncertainty

Validating uncertainty

Uncertainty estimate (and confidence intervals) are not always quantitively accurate.

unseen region

Calibration curve

• Use test data
(unseen during training)

• For each point in the test data:
Record the predicted cumulative
probability of the data point, as
predicted by the ML model

Calibration curve

• Use test data
(unseen during training)

• For each point in the test data:
Record the predicted cumulative
probability of the data point, as
predicted by the ML model

Calibration curve

• Use test data
(unseen during training)

• For each point in the test data:
Record the predicted cumulative
probability of the data point, as
predicted by the ML model

Calibration curve

• Use test data
(unseen during training)

• For each point in the test data:
Record the predicted cumulative
probability of the data point, as
predicted by the ML model

Calibration curve

• Use test data
(unseen during training)

• For each point in the test data:
Record the predicted cumulative
probability of the data point, as
predicted by the ML model

• Plot the corresponding empirical
cumulative probability

• For a large number of points:
this should tend towards a straight
line if the model is well calibrated.

Kuleshov et al., “Accurate
Uncertainties for Deep

Learning Using Calibrated
Regression”, 2018

Recalibration: correct the predicted cumulative probability

ML modelInput x

Predicted
cumulative
distribution
P (y|x)

Fit of the
calibration
curve 𝑓(𝑃)

Corrected
cumulative
distribution

f (P (y|x))

Useful when quantitative estimates
of the uncertainty are important.

Kuleshov et al., “Accurate
Uncertainties for Deep

Learning Using Calibrated
Regression”, 2018

Questions?

• Uncertainty in ML: definition and motivation

• Methods to estimate uncertainty
• Gaussian processes: reminder
• Ensemble methods
• Monte Carlo drop-out
• Bayesian neural networks
• Quantile regression

• Evaluating and calibrating uncertainty

