
Day 6: Modern Neural Networks

1

Presenter: Auralee Edelen
Day 6

What is a Neural Network?

Ingredients of a Neural Network: Individual Nodes

a neuron or node:

bias term

weightsinput
data activation function f

output

“tanh”

Ingredients of a Neural Network: Connecting Individual Nodes

a neuron or node:

bias term

weightsinput
data activation function f

output

L hidden layers
→ an “(L+1)-layer neural network”

a neural network:

“architecture.”

Ingredients of a Neural Network: Connecting Individual Nodes

https://www.jeremyjordan.me/intro-to-neural-networks/

Training

Training → optimization of model parameters
(usually just weights / biases but can include architecture as well)

Data set of N input and output samples (can be vectors)

Goal is to find approximate map

Training: Back-propagation

Backpropagation: propagate the gradient of the cost function backward through the network

→ essentially, the chain rule
→ update each weight and bias according to corresponding contribution to gradient

N
N

N N

ML libraries use automatic differentiation to make this faster/easier:
-Theano -Tensorflow -Torch

For detailed exposition on backpropagation, see: http://neuralnetworksanddeeplearning.com/chap2.html

http://neuralnetworksanddeeplearning.com/chap2.html

Activation Functions

Squashes output to range [0,1]
Historical conceptual appeal: saturation and firing rate of a neuron

Problems:
Saturated neurons kill gradients
Not zero-centered
Computational expense

Sigmoid or Logistic

Activation Functions

Sigmoid or Logistic

Squashes output to range [0,1]
Historical conceptual appeal: saturation and firing rate of a neuron

Problems:
Saturated neurons kill gradients
Not zero-centered
Computational expense

What happens when x = -10?

Activation Functions

LeCun et al., 1991

Squashes output to range [-1,1]
Zero-centered

Often approximated version is used to improve computation speed
Still has saturation problem → important to scale data to -1 to 1 range!

Hyperbolic Tangent

Activation Functions

Rectified Linear Unit (ReLU)

Does not saturate for positive values
Computationally efficient
Converges faster than sigmoid/tanh

Problems
Not zero-centered output
Dying ReLUs

Krizhevsky et al., 2012

Activation Functions

Parameterized Rectified Linear Unit (PReLU)

“leaky ReLU” alpha = 0.01

Mass et al., 2013
He et al., 2015

Does not saturate
Computationally efficient
Converges faster than sigmoid/tanh in practice
No dying!

Activation Functions

Exponential Linear Unit (ELU)

Same benefits as ReLU
Closer to zero mean outputs

Clevert et al., 2015

Activation Functions

Linear

For unbounded regression: often used on the last layer

Training

Neural networks have many parameters

→ complicated error surfaces with many local minima

Primarily use mini-batch training:
• Gradient noise is useful for jumping out of local

minima

• Reduce memory size + compute for high-D data (e.g.
images)

• Batch size is a significant training hyperparameter:
some evidence that smaller batches actually help
generalization

Very open area of research over decades:
• how to choose training and initialization techniques

that give good generalization?

https://arxiv.org/pdf/1704.00109.pdf

Training: setting the learning rate

Guess the initial learning rate:

• Error worse or oscillating
→ reduce rate

• Error decreasing slowly
→ increase rate

Too large of a learning rate at the start
will make weight magnitudes large
→ error derivatives in intermediate
layers small cs231n.stanford.edu

Training: setting the learning rate

Guess the initial learning rate:

• Error worse or oscillating
→ reduce rate

• Error decreasing slowly
→ increase rate

Too large of a learning rate at the start
will make weight magnitudes large
→ error derivatives in intermediate
layers small

https://arxiv.org/pdf/1704.00109.pdf

Anneal (reduce learning rate) toward the end of training
• Lowers fluctuations due to noise in gradient between mini-batches
• Exponential learning rate decay is common

annealing rules = annealing or decay “schedule”

cs231n.stanford.edu

Le
ar

ni
ng

 R
at

e

Iterations

https://arxiv.org/pdf/1704.00109.pdf

Training: common optimization algorithms for neural networks

In practice Adam works very well for a lot of problems
Can also use 2nd order (e.g. L-BFGS) → better for smaller networks/ data sets

For more detail see: http://cs231n.github.io/neural-networks-3/#sgd , https://ruder.io/optimizing-gradient-descent/
gif visualizations

http://cs231n.github.io/neural-networks-3/
https://ruder.io/optimizing-gradient-descent/

Training: weight Initialization

Weight initialization: random values that the weights start at

Slide credit: cs231n.stanford.edu

Training: Generalization and Overfitting

Slide credit: cs231n.stanford.edu

Overfitting

Monitor the learning curve to assess overfitting

Does require that training and
validation samples are well chosen
(and also not oversampled)

Training: Generalization and Overfitting

Regularization with L1 and L2 norm

Penalize the magnitude of the weights in the cost function

p-norm

L1-norm

L2-norm

L1-norm promotes sparsity → pushes weights toward 0
L2-norm promotes weight sharing → pushes weights to small distribution around 0

prediction error metric weight (usually << 0)

Dropout
• During each forward pass in training, with some

probability drop a given node

• At inference time, retain all nodes and scale
according to drop-out probability

• See Srivastava et al. (2014):
https://jmlr.org/papers/volume15/srivastava14
a/srivastava14a.pdf

How does this help us prevent overfitting?
• Encourages representation sharing between nodes

→ acts a bit like an ensemble
• Prevents co-adaptation of features

Bonus: can also be used for uncertainty estimates

Regularization with Dropout

cs231n.stanford.edu

See Yarin Gal’s thesis:
http://www.cs.ox.ac.uk/
people/yarin.gal/websit
e/blog_2248.html

Adapted from Srivastavas et al., (2014)

https://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
http://www.cs.ox.ac.uk/people/yarin.gal/website/blog_2248.html

Summary: Combatting Overfitting

Summary of approaches for combating overfitting:

• Penalize weight magnitudes in cost function

• Dropout

• Add noise to each iteration (e.g. noise layers)

• Add more (diverse) data

• Reduce model complexity

• Ensembling (average output of many models)

Aside: Neural networks can learn entirely random noise

Zhang, Understanding deep learning requires rethinking generalization (2017)
https://arxiv.org/pdf/1611.03530.pdf

https://arxiv.org/pdf/1611.03530.pdf

Aside: Overparameterization

Belkin et al, (2018): https://arxiv.org/abs/1812.11118

Preetum et al, (2019): https://mltheory.org/deep.pdf

https://arxiv.org/abs/1812.11118
https://mltheory.org/deep.pdf

Aside: Overparameterization

Belkin et al, (2018): https://arxiv.org/abs/1812.11118

Preetum et al, (2019): https://mltheory.org/deep.pdf

https://arxiv.org/abs/1812.11118
https://mltheory.org/deep.pdf

How to choose the architecture / model hyperparameters?

Variety of Approaches
• Rules of thumb → then iterate

depending on whether overfitting or
underfitting

• http://dstath.users.uth.gr/papers/
IJRS2009_Stathakis.pdf

• Grid search / random search

• Bayesian optimization

• Weight training and architecture search
together using heuristic methods

• Neuro Evolution of Augmenting
Topologies (NEAT)

• Neural architecture search is an open
area of research

Bergstra, Random Search for Hyperparameter Optimization (2012):
https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf

Stanley, Neuro Evolution of Augmenting Topologies (2002):
http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf

http://dstath.users.uth.gr/papers/IJRS2009_Stathakis.pdf
https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf

Summary: hyperparameters to tune

Computer Vision

Some Types of Computer Vision Tasks

Computer Vision - can we use a fully-connected neural network?

100 x 100 pixel image

→ 10,000 weights for one neuron!

Convolutional Neural Networks (CNNs)

● Learned filters convolved across image and subsequent feature maps
● Learn local features that are translation invariant

● Inspired by structure of visual cortex
● First major use on MNIST data set (ID handwritten digits), 1998

○ http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

cat
chair

mammal
mischief maker

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

Convolutional Neural Networks (CNNs)

cat
chair

mammal
mischief maker

3x3xC weights

dot product

3x3 kernel feature map

3.7 4.3

3.3 4

average
pooling repeat

conv 2 1.1

8 5

flatten

Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs)

Natural question:
Can we re-use the more primitive representations?

Transfer Learning

http://cs231n.stanford.edu/

Transfer Learning

Requires less data by not having to learn primitive features from scratch

Various “Model Zoos” of pretrained models:
Caffe: https://github.com/BVLC/caffe/wiki/Model-Zoo
TensorFlow: https://github.com/tensorflow/models
PyTorch: https://github.com/pytorch/vision

Data Augmentation

Common practice to artificially
increase data set size:

• cropping
• rotations
• noise
• mirroring
• shearing
• etc

Generative Adversarial Networks (GANs)

See NeurIPS tutorial (2016):
https://arxiv.org/pdf/1701.00160.pdf

https://arxiv.org/pdf/1701.00160.pdf

Auto-Encoders

Learn compressed representation (latent space)
of the input

Can also have more general “encoder-decoder”
style bottleneck architectures that are not auto-
encoders

https://www.compthree.com/blog/autoencoder/

Recurrent Neural Networks (RNNs)

https://arxiv.org/pdf/1907.00657.pdf

Reservoir Computing

Some use special memory gates to avoid vanishing/exploding
gradients:

Recurrent connections: previous inputs affect
next output
→ can capture series data

Historical reading:
Bengio et al, “Learning long-term dependencies with gradient descent is
difficult”, IEEE Transactions on Neural Networks, 1994
https://ieeexplore.ieee.org/document/279181

Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013 http://proceedings.mlr.press/v28/pascanu13.html

Sutskever et al, Dissertation, 2013,
https://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf

Long Short-Term Memory (LSTM),
Hochreiter et al., 1997
https://www.bioinf.jku.at/publication
s/older/2604.pdf

Gated Recurrent Unit (GRU), Cho et
al., 2014
https://arxiv.org/abs/1406.1078

https://arxiv.org/pdf/1907.00657.pdf
https://ieeexplore.ieee.org/document/279181
http://proceedings.mlr.press/v28/pascanu13.html
https://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf
https://www.bioinf.jku.at/publications/older/2604.pdf
https://arxiv.org/abs/1406.1078

And beyond...

So many specialized neural network architectures!

The “Neural Network Zoo” website can be a good
starting point for familiarization

https://www.asimovinstitute.org/neural-network-zoo/

https://www.asimovinstitute.org/neural-network-zoo/

History of Neural Networks and “AI winters”

• 1950s - 1960s: reasoning, search etc

• 1970s: AI winter

• 1980s: “connectionism” i.e. neural
networks, knowledge
representation

• 1990s: AI winter

• 1997: Deep Blue beats Gary
Kasparov in chess

• 2006: Deep learning breakthroughs
at University of Toronto

• 2011: IBM Watson wins Jeapordy

• 2015: Deep learning on GPUs

• 2016: Alpha-Go deep learning
software beats best players

What’s different now?

Argonne National LabNVIDA

Google

A. Radford

J. Schmidhuber

Applications

Next: a few examples of how neural
networks can be used in particle accelerators

Applications of AI/ML in Accelerators

Take inspiration
from accelerator
operators?

Applications of AI/ML in Accelerators

Take inspiration
from accelerator
operators?

Neural networks can be
appealing for some of
these individual tasks

Role of ML

Speeding Up Simulations

Impedes offline start-to-end optimization and control prototyping
Prohibits use as an online model (e.g. diagnostic / control applications)

Difficult to comprehensively calibrate to machine

J. Qiang, et al.,
PRSTAB30, 054402, 2017

MeasurementSimulation

Particle accelerator simulations that include nonlinear +
collective effects are powerful tools…

“10 hours on thousands of
cores at the NERSC”

… but they are computationally expensive

à very unlikely to achieve sufficient speedup with HPC resources and fundamental improvement in simulation algorithms alone

Speeding Up Simulations

Speeding Up Simulations

GAN for FEL Pulse Prediction
• The FEL process has many stochastic effects that show up as shot-to-shot variation in the output electron and photon beam
• Simulations are slow
• Photon science users would like estimates of the statistical output distributions they can expect (e.g. help with prep for analysis procedures)

à Can use a GAN to produce examples of FEL longitudinal phase space output that is statistically representative of the real process

Virtual Diagnostics

Virtual Diagnostics

Virtual Diagnostics

Virtual Diagnostics

Virtual Diagnostics

Signal Analysis

CNN for Image Analysis

time à

en
er

gy
 à

no lasing after lasing

e- beam

e- beam loses energy to photon beam

X. Ren, A. Edelen, D. Ratner, et al., PRAB 2020

x-
ra

y
po

w
er

time à

Classifying Cavity RF Trips

Classifying Cavity RF Trips

Classifying Cavity RF Trips

Improve system understanding: learn about machine sensitivities

• SPEAR3 storage ring injection efficiency
varies à trajectory feedback settings are
frequently optimized to compensate

• Use NN model to discover what is driving
the change (i.e. find unanticipated
parameter dependencies)

64F. Wang, X. Huang, ICFA ML Workshop 2019 time samples

in
j.

ef
fic

ie
nc

y
(%

)

Improve system understanding: learn about machine sensitivities

65F. Wang, X. Huang, ICFA ML Workshop 2019

à Found ground temperature was a
significant factor

à Could now use to predict ideal orbit
given ground temperature

ground temp

R
el

at
iv

e
va

ria
tio

n
in

 in
j.

ef
fic

ie
nc

y
(%

)
Id

ea
l B

PM
 p

os
iti

on

time samples

Inverse Models to Help Speed Up Optimization
A. Scheinker, A. Edelen, et al., PRL 121, 044801 (2018)
Based on sim study w/ compact FEL: A. Edelen, et al., FEL’17What if we are far away from some target beam parameters and want

to switch between configurations quickly?

à Use global model to give an initial guess at settings, then refine
with local optimization (“warm start”)
•

Example at LCLS:

- Two settings scanned (L1S phase, BC2 peak current); trained neural

network model to map longitudinal phase space to settings

- Compared optimization algorithm with/without warm start

Other Resources

Excellent visualizations and explanations: https://colah.github.io/

Deep learning textbook (online): www.deeplearningbook.org/

Excellent interactive web book: http://neuralnetworksanddeeplearning.com/

Peer-reviewed tutorials / educational blog: https://distill.pub/

Stanford computer vision course: https://cs231n.github.io/

Interactive report/visualizations for CNN calculations: https://github.com/vdumoulin/conv_arithmetic

Neural network FAQs (old but comprehensive): http://www.faqs.org/faqs/ai-faq/neural-
nets/part1/index.html

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://www.deeplearningbook.org/
http://neuralnetworksanddeeplearning.com/
https://distill.pub/
https://cs231n.github.io/
https://github.com/vdumoulin/conv_arithmetic
http://www.faqs.org/faqs/ai-faq/neural-nets/part1/index.html

Questions?

