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Ist‘ \ Motivating Application: Parameter Tuning of Accelerator
\=AA4 b

Optimize operations: maximize X-ray energy, minimize emittance, ....



Is‘fs Motivating Application: Experimental Design
A4 R
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® Quads tuning
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Comparison of Optimizers

Model-based optimization

Deterministic
* Fit model to data

Bayesian
» Calculate probability over
functions given data

A

Model-free optimization

Global

« Simulated annealing
 Particle swarm

« Genetic algorithms

Al D ML o DL

Artificial Intelligence

Machine learning

Deep learning

Bayesian Optimization

A

Local

« Gradient descent

* Nelder-Mead simplex
« Extremum seeking

« RCDS

Evolutionary Algorithms

Simplex, Gradient Descent

A

Mathematical optimization

Human optimization




Ia’ ) Why Bayesian optimization?
\=AA b

Human optimization - Numerical optimization

Bulk learning

Cannot estimate uncertainty
Juggle many things at once
Fast decisions

 Life-long learning

« Experience

* Mental modes

» (relatively) Slow decisions
* Limited working memory

Model-based Bayesian optimization
combines the complementary strengths of both approaches

“A good regulator of the system is a good model of that system.”
ROGER C. CONANT & W. ROSS ASHBY (1970) Science, 1:2, 89-97
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Ia‘n Bayesian Optimization: Overview
\=AA A

Gradient-free
Learns by experience

Machine
measurement

Acquisition function
(utility function) that
tells us where to query
the system next.



Is“'s Bayesian Optimization: Overview
L=AA A

Let’s get some intuition... Where is the maximum of f ?

Question: Where

should we take the

> | next evaluation?
1- P
. ¢ Probabilistic surrogate model
0 - i
for the values our function
[ ] .

~1- takes on unseen points.
_2 }




quad X-ray
\ - energy
unknown objective function f(x); [xq, f(xo)]

for each step t =1, 2, 3, . . . ,T:
1. Build probabilistic model

> feo1(®) Gaussian process

2. Choose next point to simultaneously increase
objective & decrease model uncertainty

> x, = argmax (UCB(x|f.-1))  UCB() = E[f ()] + B(®)

3. Sample new (noisy) point
2> f(xy)

mean

uncertainty




* Give a reliable estimate of their own uncertainty

* Shape our prior belief via the choice of kernel k(x,x")

krgr(x,x") = exp <—

(x — x’)2>
12

* Latent variables changing day to day

- optimum moves

- Kernel captures shape

10

08

06

04

02

"y —
kexponential(x;x ) = exp (—

Il — x|

l2

20
15
10
05
0.0

=05

-1.0

-15
-2.0

13



UCB.(x) = pt + Bro:(x)

* U; - posterior mean after seeing t points.
* 0, - posterior standard deviation after
seeing t points.

What is 3,?
* trades exploration and exploitation.
* too small = gets stuck/hill climbing.
* too high = incremental grid search.
 Common heuristic approach: f = 2.
* [5; may increase with time to trade

exploration as the optimization progresses.

Ia’ } Acquisition functions: Upper Confidence Bound (UCB)
W44 B
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la"s Acquisition functions: Upper Confidence Bound (UCB)
A4 b

Question: Which of the examples below is a
better optimization process?

Bayesian Optimization Example - _Bayesian Optimization Example
3-
4.
2_
3_
I
I
2 l
I
1 l
id '\ : /7 A
0 I’ ; - < I, \\
-2 \\ ,’ \ ’1 \
04 -02 00 02 04 1764 02 00 02 04

*Adapted from the 2nd ICFA workshop



Is“ } Acquisition functions: Upper Confidence Bound (UCB)
\<AA4 A

£ small - hill climbing

Bayesian Optimization Example

3.
® evaluations
21 true
function

acquisition
function

mean
prediction

2x std. dev.

-0.4 -0.2 0.0 0.2 0.4

*Adapted from the 2nd ICFA workshop



Is“ } Acquisition functions: Upper Confidence Bound (UCB)
\<AA4 A

*Adapted from the 2nd ICFA workshop

f high - incremental grid search

Bayesian Optimization Example

e —— - -— . . - - - -

-0.4 -0.2 0.0 0.2 0.4

evaluations

true
function

acquisition
function

mean
prediction

2x std. dev.



Iﬂ" ) Acquisition functions: Upper Confidence Bound (UCB)
QLA

£ small - hill climbing

Bayesian Optimization Example

-0.4 -0.2 0.0 0.2 0.4

*Adapted from the 2nd ICFA workshop

f high - incremental grid search

Bayesian Optimization Example

e = ——




Iﬂ" ) Acquisition functions: Expected Improvement (El)
QLA

EL.(x) = E[max(0,f(x) — f(x")]

 Analytical solution: (us(x) —u(x™))®(Z) + oc(x)p(2)
pe—u(x")
ot (x)

where Z = and @, ¢ are cdf and pdf of standard normal.

SO
< |

%

0.0 0.5 1.0
6; Chen, Yutian, et al. "Bayesian optimization in alphago." arXiv preprint arXiv:1812.06855 (2018).




Ia“ ] Acquisition functions: Other
\=AA A

Other types of acquisition functions, each results in a different
optimization process.

« Pl: Probability of improvement
« TS: Thompson sampling
« PES: Predictive entropy search

— Pl
— El
— UCB

= PES

https:/towardsdatascience.com/shallow-understanding-on-bayesian-optimization-324b6c1f7083



Iﬂ‘n Exploration vs Exploitation
\=AA A

050 -

025 4

000 -
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-0.75 -

Unknown objective Acquisition function — f(x) esitmate
f(x) UCB(x) = E[f(x)] + B&(x) f(x) uncertainty

X Evaluation points 21
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Iﬂ’ ] Accounting for constraints
\=AA A

Constrain the acquisition function search:
* Avoid unnecessary evaluations.
e Safe BO — not to harm the system.

*Adapted from the 2nd ICFA workshop

5
— GP mean
4 1 = true function
% data
3 -
2 -
1 -
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-20 -15 -1.0 =05 0.0 0.5 1.0 1.5 2.0
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Constrain the acquisition function search:
* Avoid unnecessary evaluations.
e Safe BO — not to harm the system.

*Adapted from the 2nd ICFA workshop

- GP mean
=== true function
% data

24



Is“ ) Accounting for constraints - Example
A4 b

Maximize FEL energy at SwissFEL using 24 parameters with constrains (lower bound on
intensity).

Slice projection

4 = SafeDescentLineBO

safety constraints '
objective

expert setting
€— DescentLineBO

lower bound

FEL Pulse Energy
2
|

S constraint violations

1 1 1 -7 -

|
0 200 400 600 800

Kirschner, arxiv: 1902.03229 25



Ia"] Proximal Optimization
\=AA b

Problem: making large changes in machine input parameters (magnetic field strengths,
cavity phases) frequently is undesirable or infeasible.

Solution: Prioritize points in input space that are near the current or most recently

observed parameter setting.

Done by penalizing the
acquisition function (i.e. by
multiplying a multivariate
Gaussian distribution).

R. Roussel, PRAB 2021
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Ia‘“ Curse of Dimensionality
QYA

Surrogate model:

GP regression - O(n3)

* Speed: Sparse GP.

e Accuracy: correlated kernels, non-zero prior.

Acquisition function optimization:

Also called “BO’s inner optimization problem”; wealth of diverse methods were proposed.
* Speed: local optimization (LineBO), parallelism, constrains

e Safety: constrains.

27



Motivation

Model-based vs model-free optimizers

Bayesian Optimization (BO)
Overview
Acquisition functions
Accounting for constraints
Proximal optimization

Applications
Summary of optimization methods



Ia“ ] Application: Online FEL maximization
\=AA A

Maximize X-ray pulse energy simultaneously on 12 quadrupoles with
diagonal kernel.

* @GP reaches higher optimum
* @GP is 4 times faster

Lk
1

X-ray pulse energy (m])
(=] %]

n_
0 10 20 30 40 50
(A Step number
REGUN & T 7
Linacs (LO,L1) B “ /‘r-.—.;—_;;.;‘
Linac (L2) vy ‘-——-/" /‘
Linac (L3)
Undulator X-rays

J. Duris, PRL, 2020 29



Ia’] Side note: Faster BO with Correlated Kernels
\=AA A

Learn correlations based on physics/ historical data.

krer(x, x") = ofexp(—(x — x)TE(x —x"))
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J. Duris, PRL, 2020
A. Hanuka, PRAB, 2021 30



Ig"s Application: Online vertical emittance minimization
LA A A

Minimize vertical emittance (= maximize beam loss rate)
with 13 skew quadrupole magnets

GP 10x speedup.

c oy Mt
E ol il i
=
= o
— i
=
o
i
S
- = GP w/ physics basis-function
= —-= GP w/ data ML-II
E """ Simplex
i} === RCDS5
D.ﬂ 1 T T
0 50 100 150 200
Step

A. Hanuka, NeurIPS 2019
A. Hanuka, PRAB, 2021

2-3 sec/ step
RCDS: 6 sec / step
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y ~ GP(m(x), k(x,x"))

mean function

1.5 1 o
e Aty R D
m’m‘:‘ I-’”dl‘# ’“”’V"r PN
¥ r"'“:.. '
u ! " ¥
1.“::J ‘ﬂlr"-,.‘i',l -
AL
y
0.5 - —— Physics basis-function, mix) = flu)
—— Data MLI, mix) = fi=)
=== Physics basis-function, mix) =
=== [ata ML-ll, m(x) =
0.0 ' ' ' |
0 20 40 60 80 100

Step

A. Hanuka, NeurIPS 2019
A. Hanuka, PRAB, 2021

GP with prior mean m(x) = 0 (dashed)
converged slower to a lower optimum.
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MOBO - Find the set of Pareto-optimal points in

objective space.

Simultaneously minimize transverse emittance &

longitudinal bunch length in the AWA photoinjector.
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R. Roussel, PRAB 2021
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Is“ ) BO Summary
QLY E

Advantages:

* Noise robust.

* Data efficient (statistical model).
* Global guarantees.

* Can handle safety constraints.

Caveats:

 Computational efficiency : Maximizing the acquisition function, GP regression.
e Curse of dimensionality.

* Practical: Hyperparameters, difficult to evaluate model fit.

35
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Iﬂ’ ] Summary of optimization methods
\=AA A

Instructions:
 We're going to split to breakout room.
e Each breakout room will fill in the table of comparison for one algorithm (room 1 = algo 1, etc)

* Optional answers — Low/Medium/High or Yes/No.
* Choose one presenter to present the table in the main room.

e Sample efficiency

» Computational cost of picking the next point 1. Nelder-Mead

* Multi-objective 2. Gradient descent

* Sensitivity to local minima 3. Powell /RCDS

* Sensitivity to noise 4. L-BFGS

* Requires to compute or estimate derivatives of f 5. Genetic algorithm

* Evaluations of f inherently done in parallel 6. Bayesian optimization

* Hyper-parameters


https://docs.google.com/presentation/d/1j6ozLhfbBTzdV8np1YVsSL2RHHKdLj9c/edit?usp=sharing&ouid=106596489330257253721&rtpof=true&sd=true

Ia“ ] Summary of optimization methods
\=AA A

Nelder- | Gradient Powell / L-BFGS Genetic Bayesian
Mead descent RCDS algorithm | optimization

Sample
efficiency

Computational
cost of picking the
next point

Multi-objective

Sensitivity to local
minima

Sensitivity to
noise




Ia‘ ] Let’s review the answers...
LAY




Iﬂ’ } Summary of optimization
W44 B

Nelder- | Gradient Powell / L-BFGS Genetic Bayesian
Mead descent RCDS algorithm | optimization
Sample /high /high Low High
efficiency
Computational | Low/ Low Low Low High
cost of picking the (e.g. (esp. in high
next point sorting) dimensions)
Multi-objective No No No No Yes Yes
Sensitivity to local High High High High Low Low
minima (builds a global
I | I model of f)
Sensitivity to High High High (Powell) High Low
noise Low (RCDS) (can model

noise itself)




Iﬂ’ ] Summary of optimization methods
\=AA A

Nelder | Gradient descent | Powell | L-BFGS | Genetic algorithm Bayesian
-Mead / RCDS optimization
Requires to No Yes No Yes No No
compute or
estimate
derivatives of f
Evaluations of f No No No No Yes No
inherently done
in parallel
Hyper- Initial Step size: a # fit Accuracy |* Population size Kernel
parameters simplex | (+momentum: [5) points | of hessian | * Mutation rate function
estimate |* Cross-over rate Kernel length
Noise * Number of scales,
level generations amplitude
Noise level
Acquisition

function




Thank you for your attention!

1 For the weekend!
2 Lectures only! We still have lab afternoon



