

Bayesian Optimization

Presenter: Adi Hanuka

Day 5

Outline

- Motivation
- Model-based vs model-free optimizers
- Bayesian Optimization (BO)
 - Overview
 - Acquisition functions
 - Accounting for constraints
 - Proximal optimization
- Applications
- Summary of optimization methods

Motivating Application: Parameter Tuning of Accelerator

Optimize operations: maximize X-ray energy, minimize emittance,

Motivating Application: Experimental Design

Optimize design parameters

Online optimization of quadrupole magnets @LCLS, SLAC

Quadrupoles provide focusing

- → maintain small beam size
- → Higher X-ray pulse energy!

Outline

- Motivation
- Model-based vs model-free optimizers
- Bayesian Optimization (BO)
 - Overview
 - Acquisition functions
 - Accounting for constraints
 - Proximal optimization
- Applications
- Summary of optimization methods

Comparison of Optimizers

$AI \supset ML \supset DL$ **Model-based optimization Deterministic** Artificial Intelligence Fit model to data Machine learning Bayesian Calculate probability over ← Deep learning functions given data **Model-free optimization** Bayesian Optimization Global Simulated annealing **Evolutionary Algorithms** Particle swarm Genetic algorithms Simplex, Gradient Descent Local Gradient descent Mathematical optimization Nelder-Mead simplex Extremum seeking • RCDS **Human optimization**

Why Bayesian optimization?

Human optimization

#

Numerical optimization

- Life-long learning
- Experience
- Mental modes
- (relatively) Slow decisions
- Limited working memory

- Bulk learning
- Cannot estimate uncertainty
- Juggle many things at once
- Fast decisions

Model-based Bayesian optimization combines the complementary strengths of both approaches

"A good regulator of the system is a good model of that system."

ROGER C. CONANT & W. ROSS ASHBY (1970) Science, 1:2, 89-97

Outline

- Motivation
- Model-based vs model-free optimizers
- Bayesian Optimization (BO)
 - Overview
 - Acquisition functions
 - Accounting for constraints
 - Proximal optimization
- Applications
- Summary of optimization methods

Bayesian Optimization: Overview

- Gradient-free
- Learns by experience

Acquisition function (utility function) that tells us where to query the system next.

Bayesian Optimization: Overview

Let's get some intuition... Where is the maximum of f?

Question: Where should we take the next evaluation?

Probabilistic surrogate model for the values our function takes on unseen points.

Bayesian optimization: Overview

quad x-ray energy unknown objective function f(x); $[x_0, f(x_0)]$

for each step t = 1, 2, 3, . . . ,T:

- 1. Build probabilistic model
 - $\rightarrow \hat{f}_{t-1}(x)$ Gaussian process

 Choose next point to simultaneously increase objective & decrease model uncertainty

$$\rightarrow x_t = \operatorname{argmax} \left(\operatorname{UCB}(x|\hat{f}_{t-1}) \right) \quad \operatorname{UCB}(x) = \operatorname{E}[\hat{f}(x)] + \beta \hat{\sigma}(x)$$

3. Sample new (noisy) point $\rightarrow f(x_t)$

Surrogate model: Gaussian process

Give a reliable estimate of their own uncertainty

• Shape our prior belief via the choice of kernel k(x, x')

 $k_{\text{exponential}}(x, x') = \exp\left(-\frac{\|x - x'\|}{l^2}\right)$ Kernel function $\begin{pmatrix} 20 \\ 15 \\ 10 \\ 0.5 \\ 0.0 \\ -0.5 \\ -1.0 \\ -1.5 \\ -2.0 \end{pmatrix}$ Posterior samples

- Latent variables changing day to day
 - → optimum moves
 - → Kernel captures **shape**

$$UCB_t(x) = \mu_t + \beta_t \sigma_t(x)$$

- μ_t posterior mean after seeing t points.
- σ_t posterior standard deviation after seeing t points.

What is β_t ?

- trades exploration and exploitation.
 - too small ⇒ gets stuck/hill climbing.
 - too high ⇒ incremental grid search.
- Common heuristic approach: $\beta \approx 2$.
- β_t may increase with time to trade exploration as the optimization progresses.

Question: Which of the examples below is a better optimization process?

 β high - incremental grid search

 β small - hill climbing

 β high - incremental grid search

Acquisition functions: Expected Improvement (EI)

$$EI_{t}(\mathbf{x}) = \mathbf{E}[\max(0, f(\mathbf{x}) - f(\mathbf{x}^{+})]$$

• Analytical solution: $(\mu_t(x) - \mu(x^+))\Phi(Z) + \sigma(x)\varphi(Z)$ where $Z = \frac{\mu_t - \mu(x^+)}{\sigma_t(x)}$ and Φ , φ are cdf and pdf of standard normal.

Acquisition functions: Other

Other types of acquisition functions, each results in a different optimization process.

- PI: Probability of improvement
- TS: Thompson sampling
- PES: Predictive entropy search

https://towardsdatascience.com/shallow-understanding-on-bayesian-optimization-324b6c1f7083

Exploration vs Exploitation

Unknown objective f(x)

Acquisition function Acquisition function $-\hat{f}(x)$ esitmate $UCB(x) = E[\hat{f}(x)] + \beta \hat{\sigma}(x)$ $\hat{f}(x)$ uncertainty

 $-\hat{f}(x)$ esitmate **X** Evaluation points

Outline

- Motivation
- Model-based vs model-free optimizers
- Bayesian Optimization (BO)
 - Overview
 - Acquisition functions
 - Accounting for constraints
 - Proximal optimization
- Applications
- Summary of optimization methods

Accounting for constraints

Constrain the acquisition function search:

- Avoid unnecessary evaluations.
- Safe BO not to harm the system.

*Adapted from the 2nd ICFA workshop

Accounting for constraints

Constrain the acquisition function search:

- Avoid unnecessary evaluations.
- Safe BO not to harm the system.

Orange regions to be avoided

*Adapted from the 2nd ICFA workshop

Accounting for constraints - Example

Maximize FEL energy at SwissFEL using 24 parameters with constrains (lower bound on intensity).

Kirschner, arxiv: 1902.03229

Proximal Optimization

Problem: making large changes in machine input parameters (magnetic field strengths, cavity phases) frequently is undesirable or infeasible.

Solution: Prioritize points in input space that are near the current or most recently observed parameter setting.

Done by penalizing the acquisition function (i.e. by multiplying a multivariate Gaussian distribution).

R. Roussel, PRAB 2021 26

Curse of Dimensionality

Surrogate model:

GP regression - $O(n^3)$

- Speed: Sparse GP.
- Accuracy: correlated kernels, non-zero prior.

Acquisition function optimization:

Also called "BO's inner optimization problem"; wealth of diverse methods were proposed.

- <u>Speed</u>: local optimization (LineBO), parallelism, constrains
- <u>Safety</u>: constrains.

Outline

- Motivation
- Model-based vs model-free optimizers
- Bayesian Optimization (BO)
 - Overview
 - Acquisition functions
 - Accounting for constraints
 - Proximal optimization
- Applications
- Summary of optimization methods

Application: Online FEL maximization

Maximize X-ray pulse energy simultaneously on 12 quadrupoles with diagonal kernel.

- GP reaches higher optimum
- GP is 4 times faster

J. Duris, PRL, 2020

Side note: Faster BO with Correlated Kernels

Learn correlations based on physics/ historical data.

$$k_{\text{RBF}}(\boldsymbol{x}, \boldsymbol{x}') = \sigma_f^2 \exp(-(\boldsymbol{x} - \boldsymbol{x}')^T \boldsymbol{\Sigma} (\boldsymbol{x} - \boldsymbol{x}'))$$

(d) Convergence tests

Application: Online vertical emittance minimization

Minimize vertical emittance (= maximize beam loss rate) with 13 skew quadrupole magnets

• GP 10x speedup.

2-3 sec / step

RCDS: 6 sec / step

Side: Effect of GP prior mean on the optimization

$$y \sim GP(m(x), k(x, x'))$$

mean function

GP with prior mean m(x) = 0 (dashed) converged slower to a lower optimum.

Application: Multi-Objective BO (MOBO)

MOBO - Find the set of Pareto-optimal points in objective space.

Simultaneously minimize transverse emittance & longitudinal bunch length in the AWA photoinjector.

R. Roussel, PRAB 2021

BO Summary

Advantages:

- Noise robust.
- Data efficient (statistical model).
- Global guarantees.
- Can handle safety constraints.

Caveats:

- Computational efficiency: Maximizing the acquisition function, GP regression.
- Curse of dimensionality.
- Practical: Hyperparameters, difficult to evaluate model fit.

Outline

- Motivation
- Model-based vs model-free optimizers
- Bayesian Optimization (BO)
 - Overview
 - Acquisition functions
 - Accounting for constraints
 - Proximal optimization
- Applications
- Summary of optimization methods

Summary of optimization methods

Instructions:

- We're going to split to breakout room.
- Each breakout room will fill in the table of comparison for one algorithm (room 1 \rightarrow algo 1, etc)
- Table of comparison
- Optional answers Low/Medium/High or Yes/No.
- Choose one presenter to present the table in the main room.

- Sample efficiency
- Computational cost of picking the next point
- Multi-objective
- Sensitivity to local minima
- Sensitivity to noise
- Requires to compute or estimate derivatives of f
- Evaluations of *f* inherently done in parallel
- Hyper-parameters

- 1. Nelder-Mead
- 2. Gradient descent
- 3. Powell / RCDS
- 4. L-BFGS
- 5. Genetic algorithm
- 6. Bayesian optimization

Summary of optimization methods

	Nelder- Mead	Gradient descent	Powell / RCDS	L-BFGS	Genetic algorithm	Bayesian optimization
Sample efficiency						
Computational cost of picking the next point						
Multi-objective						
Sensitivity to local minima						
Sensitivity to noise						

Let's review the answers...

Summary of optimization methods

	Nelder- Mead	Gradient descent	Powell / RCDS	L-BFGS	Genetic algorithm	Bayesian optimization
Sample efficiency	Medium	Medium	Medium/high	Medium/high	Low	High
Computational cost of picking the next point	Low/Mediu m	Low	Low	Low	Medium (e.g. sorting)	High (esp. in high dimensions)
Multi-objective	No	No	No	No	Yes	Yes
		(but can u	ise scalarizatio	n)		
Sensitivity to local minima	High	High	High	High	Low	Low (builds a global
		(but can		model of <i>f</i>)		
Sensitivity to noise	High	High	High (Powell) Low (RCDS)	High	Medium	Low (can model noise itself)

Summary of optimization methods

	Nelder -Mead	Gradient descent	Powell / RCDS	L-BFGS	Genetic algorithm	Bayesian optimization
Requires to compute or estimate derivatives of f	No	Yes	No	Yes	No	No
Evaluations of <i>f</i> inherently done in parallel	No	No	No	No	Yes	No
Hyper- parameters	Initial simplex	Step size: α (+momentum: β)	# fit points Noise level	Accuracy of hessian estimate	 Population size Mutation rate Cross-over rate Number of generations 	 Kernel function Kernel length scales, amplitude Noise level Acquisition function

Thank you for your attention!

1 For the weekend!

2 Lectures only! We still have lab afternoon