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Motivating Application: Parameter Tuning of Accelerator

Optimize operations: maximize X-ray energy, minimize emittance, ….



Motivating Application: Experimental Design

Optimize design parameters
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Setup time [min] Search space [n-D]
15 min

~24D
2-5 times/day 

Quadrupoles provide focusing 

→ maintain small beam size 

→ Higher X-ray pulse energy!

Online optimization of quadrupole magnets @LCLS, SLAC
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AI ⊃ ML ⊃ DL

Artificial Intelligence

Machine learning

Deep learning

Mathematical optimization

Bayesian Optimization

Evolutionary Algorithms

Simplex, Gradient Descent

Global

• Simulated annealing

• Particle swarm

• Genetic algorithms

Local

• Gradient descent

• Nelder-Mead simplex

• Extremum seeking

• RCDS

Model-free optimization

Bayesian

• Calculate probability over 

functions given data

Deterministic

• Fit model to data

Model-based optimization

Human optimization

Comparison of Optimizers



Why Bayesian optimization?

Numerical optimization

• Bulk learning

• Cannot estimate uncertainty

• Juggle many things at once

• Fast decisions

Human optimization

• Life-long learning

• Experience

• Mental modes

• (relatively) Slow decisions

• Limited working memory

≠

Model-based Bayesian optimization

combines the complementary strengths of both approaches

“A good regulator of the system is a good model of that system.”
ROGER C. CONANT & W. ROSS ASHBY (1970) Science, 1:2, 89-97
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Bayesian 
optimizer

Bayesian Optimization: Overview 

Input 
controls

Machine 
measurement

suggests next set of inputs

iteratively until reach a budget 

• Gradient-free
• Learns by experience

Acquisition function
(utility function) that 
tells us where to query 
the system next.



Bayesian Optimization: Overview 

Let’s get some intuition…  Where is the maximum of 𝑓 ? 

Probabilistic surrogate model
for the values our function 
takes on unseen points.

Question: Where 
should we take the 

next evaluation?



unknown objective function 𝒇 𝒙 ; 

→ ෠𝒇𝒕−𝟏 𝑥

samples mean uncertainty

Gaussian process

[𝒙𝟎, 𝒇 𝒙𝟎 ]

quad X-ray 

energy

→ 𝒇(𝒙𝒕)

→ 𝒙𝒕 = argmax 𝐔𝐂𝐁 𝒙|෠𝒇𝒕−𝟏 𝐔𝐂𝐁 𝒙 = 𝐄 ෠𝒇 𝒙 + 𝜷ෝ𝝈 𝒙

Bayesian optimization: Overview
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• Give a reliable estimate of their own uncertainty

• Shape our prior belief via the choice of kernel 𝑘 𝑥, 𝑥′

• Latent variables changing day to day 
→ optimum moves
→ Kernel captures shape

𝑘exponential 𝑥, 𝑥
′ = exp −

𝑥 − 𝑥′

𝑙2
𝑘RBF 𝑥, 𝑥′ = exp −

𝑥 − 𝑥′ 2

𝑙2

Surrogate model: Gaussian process



Acquisition functions: Upper Confidence Bound (UCB)

UCBt 𝑥 = 𝜇𝑡 + 𝛽𝑡𝜎𝑡 𝑥

• 𝜇𝑡 - posterior mean after seeing 𝑡 points. 
• 𝜎𝑡 - posterior standard deviation after 

seeing 𝑡 points.

What is 𝛽𝑡? 
• trades exploration and exploitation.

• too small ⇒ gets stuck/hill climbing.
• too high ⇒ incremental grid search.

• Common heuristic approach: 𝛽 ≈ 2.
• 𝛽𝑡 may increase with time to trade 

exploration as the optimization progresses.



Acquisition functions: Upper Confidence Bound (UCB)

*Adapted from the 2nd ICFA workshop

Question: Which of the examples below is a 
better optimization process?



Acquisition functions: Upper Confidence Bound (UCB)

𝛽 small - hill climbing 

*Adapted from the 2nd ICFA workshop



Acquisition functions: Upper Confidence Bound (UCB)

𝛽 high - incremental grid search

*Adapted from the 2nd ICFA workshop



Acquisition functions: Upper Confidence Bound (UCB)

𝛽 high - incremental grid search𝛽 small - hill climbing 

*Adapted from the 2nd ICFA workshop



Acquisition functions: Expected Improvement (EI)

EIt(𝒙) = 𝐄[max(0, f (𝒙) − f (𝒙+) ]

• Analytical solution: (𝜇𝑡(𝑥) − 𝜇(𝑥+))Φ(𝑍) + 𝜎(𝑥)𝜑(𝑍)

where 𝑍 =
𝜇𝑡−𝜇 𝑥+

𝜎𝑡(𝑥)
and Φ,𝜑 are cdf and pdf of standard normal.

𝑓
(𝑥
)

Chen, Yutian, et al. "Bayesian optimization in alphago." arXiv preprint arXiv:1812.06855 (2018).



Acquisition functions: Other

https://towardsdatascience.com/shallow-understanding-on-bayesian-optimization-324b6c1f7083

Other types of acquisition functions, each results in a different 
optimization process. 

● PI: Probability of improvement
● TS: Thompson sampling
● PES: Predictive entropy search
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Exploration vs Exploitation

Acquisition function

𝐔𝐂𝐁 𝒙 = 𝐄 ෠𝒇 𝒙 + 𝜷ෝ𝝈 𝒙

Unknown objective
𝒇 𝒙

X 𝐄𝐯𝐚𝐥𝐮𝐚𝐭𝐢𝐨𝐧 𝐩𝐨𝐢𝐧𝐭𝐬

− ෠𝒇 𝑥 𝐞𝐬𝐢𝐭𝐦𝐚𝐭𝐞
෠𝒇 𝑥 𝐮𝐧𝐜𝐞𝐫𝐭𝐚𝐢𝐧𝐭𝐲

Video credit: cnc-selfbuild blogspot
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Accounting for constraints
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Constrain the acquisition function search: 
• Avoid unnecessary evaluations.
• Safe BO – not to harm the system. 

*Adapted from the 2nd ICFA workshop



Accounting for constraints
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Constrain the acquisition function search: 
• Avoid unnecessary evaluations.
• Safe BO – not to harm the system. 

Orange 
regions to 
be avoided

*Adapted from the 2nd ICFA workshop



Accounting for constraints - Example

25Kirschner, arxiv: 1902.03229

Maximize FEL energy at SwissFEL using 24 parameters with constrains (lower bound on 
intensity). 

safety constraints

objective

Slice projection



Proximal Optimization

26R. Roussel, PRAB 2021

Problem: making large changes in machine input parameters (magnetic field strengths, 
cavity phases) frequently is undesirable or infeasible.

Solution: Prioritize points in input space that are near the current or most recently 
observed parameter setting.

Done by penalizing the 
acquisition function (i.e. by 
multiplying a multivariate 
Gaussian distribution). 



Curse of Dimensionality
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Surrogate model:
GP regression - O(𝑛3)
• Speed: Sparse GP.
• Accuracy: correlated kernels, non-zero prior.

Acquisition function optimization:
Also called  “BO’s inner optimization problem”; wealth of diverse methods were proposed.
• Speed: local optimization (LineBO), parallelism, constrains
• Safety: constrains.
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Application: Online FEL maximization

Maximize X-ray pulse energy simultaneously on 12 quadrupoles with 
diagonal kernel.

• GP reaches higher optimum
• GP is 4 times faster

RF Gun
Linacs (L0,L1)

220 GeV Linac (L2)

5 GeV Linac (L3)

14 GeV Undulator X-rays 

J. Duris, PRL, 2020
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Side note: Faster BO with Correlated Kernels 

J. Duris, PRL, 2020
A. Hanuka, PRAB, 2021

Learn correlations based on physics/ historical data.

𝑘RBF 𝒙, 𝒙′ = 𝜎𝑓
2exp(− 𝒙 − 𝒙′ 𝑇𝚺 𝒙 − 𝒙′ )

Σ =
𝐿 0
0 𝐿

Σ =
𝐿11 𝐿12
𝐿21 𝐿22

Σ = −
𝐻𝑖𝑗

2
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Application: Online vertical emittance minimization 

Minimize vertical emittance (= maximize beam loss rate) 
with 13 skew quadrupole magnets

• GP 10x speedup.

2-3 sec / step

RCDS: 6 sec / step

A. Hanuka, NeurIPS 2019
A. Hanuka, PRAB, 2021
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Side: Effect of GP prior mean on the optimization

𝑦 ∼ 𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥′))
mean function

GP with prior mean 𝑚 𝑥 = 0 (dashed) 
converged slower to a lower optimum.

A. Hanuka, NeurIPS 2019
A. Hanuka, PRAB, 2021
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Application: Multi-Objective BO (MOBO)

R. Roussel, PRAB 2021

MOBO - Find the set of Pareto-optimal points in 
objective space.

Simultaneously minimize transverse emittance & 
longitudinal bunch length in the AWA photoinjector.



BO Summary
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Advantages:
• Noise robust.
• Data efficient (statistical model). 
• Global guarantees. 
• Can handle safety constraints.

Caveats:
• Computational efficiency : Maximizing the acquisition function, GP regression. 
• Curse of dimensionality. 
• Practical: Hyperparameters, difficult to evaluate model fit.
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Summary of optimization methods

• Sample efficiency
• Computational cost of picking the next point
• Multi-objective
• Sensitivity to local minima
• Sensitivity to noise
• Requires to compute or estimate derivatives of f
• Evaluations of f inherently done in parallel
• Hyper-parameters

1. Nelder-Mead
2. Gradient descent
3. Powell / RCDS
4. L-BFGS
5. Genetic algorithm
6. Bayesian optimization

Instructions:
• We’re going to split to breakout room.
• Each breakout room will fill in the table of comparison for one algorithm (room 1 → algo 1, etc)
• Table of comparison
• Optional answers – Low/Medium/High or Yes/No.
• Choose one presenter to present the table in the main room.

https://docs.google.com/presentation/d/1j6ozLhfbBTzdV8np1YVsSL2RHHKdLj9c/edit?usp=sharing&ouid=106596489330257253721&rtpof=true&sd=true


Summary of optimization methods

Nelder-
Mead

Gradient 
descent

Powell /
RCDS

L-BFGS Genetic 
algorithm

Bayesian 
optimization

Sample
efficiency

Computational 
cost of picking the 

next point

Multi-objective

Sensitivity to local 
minima

Sensitivity to 
noise



Let’s review the answers…



Summary of optimization methods

Nelder-
Mead

Gradient 
descent

Powell /
RCDS

L-BFGS Genetic 
algorithm

Bayesian 
optimization

Sample
efficiency

Medium Medium Medium/high Medium/high Low High

Computational 
cost of picking the 

next point

Low/Mediu
m

Low Low Low Medium
(e.g. 

sorting)

High
(esp. in high 
dimensions)

Multi-objective No No No No Yes Yes

Sensitivity to local 
minima

High High High High Low Low
(builds a global

model of f)

Sensitivity to 
noise

High High High (Powell)
Low (RCDS)

High Medium Low
(can model 
noise itself)

(but can use scalarization)

(but can use multi-start)



Summary of optimization methods

Nelder
-Mead

Gradient descent Powell 
/ RCDS

L-BFGS Genetic algorithm Bayesian 
optimization

Requires to 
compute or 

estimate
derivatives of f

No Yes No Yes No No

Evaluations of f 
inherently done

in parallel

No No No No Yes No

Hyper-
parameters

Initial
simplex

Step size: 𝛼
(+momentum: 𝛽)

# fit 
points

Noise 
level

Accuracy 
of hessian 
estimate

• Population size
• Mutation rate
• Cross-over rate
• Number of 

generations

• Kernel 
function

• Kernel length 
scales, 
amplitude

• Noise level
• Acquisition 

function



Thank you for your attention!

1 For the weekend!

2 Lectures only! We still have lab afternoon

1,2


