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History - Prediction with GPs:
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• 1940’s Time series: Wiener, Kolmogorov

• 1970’s Geostatistics: kriging only 2D/3D input spaces

• 1978 General regression: O’Hagan

• 1989 Computer experiments (noise free): Sacks

• 1993 Spatial statistics in general: Cressie for overview

• 1996 Machine learning: Williams and Rasmussen, Neal, Mackay



Supervised Learning

Problem statement: 

Given a small finite training data samples, estimate a function that predicts for 
all possible inputs. 

Possible solutions:

• Restrict the solution functions that we consider. 
• Linear regression 
• If wrong form of function is chosen → predictions will be poor. 

• Apply prior probabilities to functions that we consider more likely. 
• Infinite possibilities of functions to consider. 



Parametric Models vs. Non-parametric Models 

Parametric models 

• The model structure is specified 
a priori.

• Assume finite set of parameters 
(𝜃).

• Given 𝜃, future predictions are 
independent of the observed 
data.

Non-parametric models 

• The model structure is not 
specified a priori but is 
determined from the data.

• Assume infinitely many 
parameters (𝜃 is a function).

• Flexible - the amount of 
information that 𝜃 can capture 
about the data can grow as the 
amount of data grows.



Parametric Models vs. Non-parametric Models 

Parametric models 

• Polynomial regression

Non-parametric models 

• Gaussian Process



What is a Gaussian process?
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Definition: A Gaussian process is a collection of random variables, any finite number of 
which have a joint Gaussian distribution. 

Gaussian processes provide a well defined approach for learning model and 
hyperparameters from the data. 



Learning in Gaussian Processes

Evidence = Probability of the data given the model.

(Rasmussen & Williams) 

• Complex models that account 

for many datasets only achieve 

modest evidence.

• If the model is too simple

evidence may be high but only 

for few datasets.
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Gaussian distribution vs Gaussian process
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Gaussian distributions 𝑁(𝜇, Σ)
• Distribution over vectors.
• Fully specified by a mean and covariance. 

Gaussian processes 𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥’))
• Distribution over functions. 
• Fully specified by a mean function and covariance 

function. 

Normal dist.

(1-D Gaussian)

Gaussian process

(∞-D Gaussian)



What do we need to define?
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𝑚(𝑥) - Mean function.
• Usually defined to be zero; justified by manipulating the data. 

𝑘(𝑥, 𝑥’) - Covariance function (kernel).
• Defines the prior properties of the functions considered for inference. 

Properties include: stationarity, smoothness, length-scales

𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥’))

Note: 𝐾𝑖𝑗 = 𝑘(𝑥𝑖 , 𝑥𝑗) is the covariance matrix, constructed from the covariance 

function. 

𝐾𝑋𝑋 =

𝑘(𝑥1, 𝑥1) 𝑘 𝑥1, 𝑥2
𝑘(𝑥2, 𝑥1) 𝑘 𝑥2, 𝑥2

… …

… 𝑘(𝑥1, 𝑥𝑛)
… 𝑘(𝑥2, 𝑥𝑛)
… …

𝑘 𝑥𝑛, 𝑥1 𝑘 𝑥𝑛, 𝑥2 … 𝑘(𝑥𝑛, 𝑥𝑛)



Covariance Functions
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The covariance function (kernel) must be: 
• Positive semi-definite: xT𝑀x ≥ 0 for all x ∈ ℝ𝑛, 𝑀 is 𝑛xn real matrix.
• Symmetric: 𝑘(𝑥, 𝑥′ ) = 𝑘(𝑥′, 𝑥 )

Covariance functions can be split broadly into two groups: 
• Stationary: Invariant to translations in the input space. 𝑘(𝑥, 𝑥′ ) = 𝑘(𝑥′ − 𝑥 )
• Non-stationary: functions vary with translation.

Kernels are similarity measures between points and encodes smoothness.



Covariance Functions: Radial Basis Function (RBF)
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𝑘(𝑥, 𝑥′ ) = exp
−|| 𝑥 − 𝑥′ ||2

2𝑙2
𝑙 is the length-scale (hyper-parameter)

Also called: Squared exponential

*Adapted from the 2nd ICFA workshop

Very smooth sample functions — infinitely differentiable
Question: Is this a stationary kernel?

Yes                                              No



Covariance Functions: Exponential Kernel

𝑘(𝑥, 𝑥′ ) = exp
−|| 𝑥 − 𝑥′ ||

2𝑙2
𝑙 is the length-scale

*Adapted from the 2nd ICFA workshop



Covariance Functions: Matern Kernels
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𝑘(𝑥, 𝑥′) = 1 +
√3 | 𝑥 − 𝑥′ |

𝑙
exp −

√3| 𝑥 − 𝑥′ |

𝑙

Matern52, etc: Family of kernels with increasing smoothness

*Adapted from the 2nd ICFA workshop

𝑙 is the length-scale



Covariance Functions: Linear
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𝑘(𝑥, 𝑥′) = 𝑥𝑇𝑥′

Recovers (Bayesian) linear regression! 

*Adapted from the 2nd ICFA workshop



Other covariance functions

• Linear covariance: 𝑘(𝑥, 𝑥′) = 𝑥𝑇𝑥′

• Brownian motion (Wiener process): 𝑘 𝑥, 𝑥′ = min(𝑥, 𝑥′)

• Periodic covariance: 𝑘 𝑥, 𝑥′ = exp −
2

𝑙2
sin2

𝑥−𝑥′

2

• Neural network covariance



Constructing new kernels from old

We can construct more expressive kernels by combining them:

• Sum: 𝑘1(𝑥, 𝑥′) + 𝑘2(𝑥, 𝑥′)

• Product: 𝑘1(𝑥, 𝑥′)𝑘2(𝑥, 𝑥′)

• Convolution: ∫ 𝑑𝑧𝑑𝑧′ℎ 𝑥, 𝑧 𝑘 𝑧, 𝑧′ ℎ(𝑥′𝑧′)



Each kernel has its own hyper-parameters 

Length-scale:

• Smoothness of function. 

• Different lengthscales for different dimensions (ARD). 

• If too large, might not model the objective well. 

• Normalizes the input space (x-values).

Amplitude variance:

• Expected range of objective values.

• Option: Keep fixed (to 1) and normalize the objective (y-values).

𝑘(𝑥, 𝑥′ ) = 𝜎𝑓
2exp

−|| 𝑥 − 𝑥′ ||2

2𝑙2



Noise

We normally assume prediction noise:

Noise variance:

• Easy to measure. 

• Slightly larger value increases robustness. 

𝑘(𝑥, 𝑥′ ) = 𝜎𝑓
2exp

−|| 𝑥 − 𝑥′ ||2

2𝑙2
+ 𝜎𝑛

2𝛿(𝑥 − 𝑥′)



Effect of hyperparameters: length-scale
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𝑘(𝑥, 𝑥′ ) = 𝜎𝑓
2exp

−|| 𝑥 − 𝑥′ ||2

2𝑙2
+ 𝜎𝑛

2𝛿(𝑥 − 𝑥′)

𝑙=1 𝑙=3𝑙=0.3

Question: Which length-scale seems too big? just right? too small? 



Effect of hyperparameters: amplitude
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𝑘(𝑥, 𝑥′ ) = 𝜎𝑓
2exp

−|| 𝑥 − 𝑥′ ||2

2𝑙2
+ 𝜎𝑛

2𝛿(𝑥 − 𝑥′)

𝜎𝑓 = 1 𝜎𝑓 = 3𝜎𝑓 = 0.3



Effect of hyperparameters: noise
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𝑘(𝑥, 𝑥′ ) = 𝜎𝑓
2exp

−|| 𝑥 − 𝑥′ ||2

2𝑙2
+ 𝜎𝑛

2𝛿(𝑥 − 𝑥′)

𝜎𝑛 = 0.2 𝜎𝑛 = 0.8𝜎𝑛 = 0.1

Higher noise values make more coarse approximations which avoids overfitting to noisy data.



Try and error

• Intuitive tuning based on experience. 

ML-II (point estimates):

• Choose hyperparameters and kernels directly from data.

• How? Maximize the marginal likelihood wrt hyperparameters.

• Requires representative initial data. 

• Could work with data collected while optimizing a system online (i.e. on-the-fly).

How to choose hyperparameters?

24

𝑝 𝑦 Ԧ𝑥 = න𝑝 𝑦 𝑓, Ԧ𝑥 𝑝 𝑓 Ԧ𝑥 𝑑𝑓

log 𝑝 𝑦 Ԧ𝑥 = −
1

2
𝑦TK −1𝑦 −

1

2
log |𝐾| −

𝑁

2
log 2𝜋

Data fit Complexity 

penalty

Optimization can be 

carried out using 

standard optimization 

techniques.



Hierarchical Gaussian Process 
(HGP) for quantifying 
hyperparameters sensitivity:

In red: ML-II (typically 
underestimates) 

How to choose hyperparameters?

25A. Hanuka, Spear3 data



How to choose hyperparameters? - Example

26*Adapted from McDuff, MIT Media Lab

Full disclosure about the data: generated from a GP with affine mean 
function and Matern kernel with Gaussian noise. 



How to choose hyperparameters? - Example

27*Adapted from McDuff, MIT Media Lab

Maximize marginal likelihood = minimize the negative log marginal likelihood 

Question: Which model is better?



How to choose hyperparameters? - Example

28*Adapted from McDuff, MIT Media Lab

Maximize marginal likelihood = minimize the negative log marginal likelihood 

Negative log marginal likelihood: 7.07 Negative log marginal likelihood: 14.13



How to choose hyperparameters?– Accelerator Example
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Could we learn correlations?
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J. Duris, PRL 124, 124801, (2020)
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No trend in correlations between adjacent 
quadrupoles (should be anti-correlated) is 
shown in historical machine data.

Possible solution: learn from simulated data. 



Construct domain-aware kernels
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Goal: Design kernels to incorporate more specific prior knowledge.

A. Hanuka, NeurIPS 2019
A. Hanuka, PRAB2021

Kernel could be defined as a convolution of a basis function (𝜑(𝑥)) [Mackay 1992]:

Approximated with the simulation or 
analytical model 𝑓(𝑥)

Approximate the simulation around the peak 𝜑 𝑥 = exp
1

2
Ԧ𝑥 − Ԧ𝑥0

T𝐻 Ԧ𝑥 − Ԧ𝑥0
T

𝑘 Ԧ𝑥, Ԧ𝑥′ ∼ exp −
1

2
Ԧ𝑥 − Ԧ𝑥′ TΣ Ԧ𝑥 − Ԧ𝑥′

𝑘 Ԧ𝑥, Ԧ𝑥′ ∝ න

−∞

∞

𝜑 Ԧ𝑥 − 𝑐 𝜑 Ԧ𝑥′ − 𝑐 𝑑𝑐

Σ = −𝐻/2

𝐻I,j = 𝜕𝑥𝑖𝜕𝑥𝑗log 𝑓(𝑥)Simulation peak



Domain-aware kernels – effect on optimization
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Optimization task would have faster convergence:
• Due to correlations. 
• (Somewhat) better representation of the system.



Intermediate summary

• We have seen examples of GPs with various covariance functions (=kernels).

• General properties of kernels controlled by small number of hyperparameters
(amplitude, length-scales, noise).

• GP model selection (kernel + hyperparameters) by:
• Try-and-error

• ML-II (minimize the negative log marginal likelihood)

• Construct from basis-functions using simulation/analytical model. 

• Next task: prediction from (noisy) data using GP.
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How do we predict with GPs?

• GP predictions boil down to conditioning joint Gaussian distributions.

• make predictions about 𝑦∗ given observations of 𝑦2, we use Bayes rules to 
calculate 𝑝(𝑦∗ ∣ 𝑦2):

𝑝 𝑦∗ 𝑦2 =
𝑝(𝑦∗, 𝑦2)

𝑝(𝑦2)

𝑝 𝑦∗, 𝑦2 = 𝑁 0,
𝐾𝑋𝑋 + 𝜎𝑛

2𝐼
𝐾𝑋∗𝑋

𝐾𝑋𝑋∗

𝐾𝑋∗𝑋∗

*

𝑝 𝑦∗ 𝑦2 = 𝑁 𝑚∗, 𝜎 ∗

• For a GP with zero mean and covariance 𝐾𝑋𝑋 + 𝜎𝑛
2𝐼,  

the joint distribution 𝑦∗ & 𝑦2 is:

• The predictive equations:

Recall:
𝐾𝑋𝑋 = 𝑘(𝑋, 𝑋)



How do we predict with GPs?

Computational costs:

• Inversion of 𝐾𝑋𝑋 + 𝜎𝑛
2𝐼

−1
costs 𝑂(𝑛3).

• Prediction cost per test case is 𝑂(𝑛) for the mean and 𝑂(𝑛2) for the variance.

*

𝑝 𝑦∗ 𝑦2 = 𝑁 𝑚∗, 𝜎 ∗The predictive equations:

𝑚∗ = 𝐾𝑋∗𝑋 𝐾𝑋𝑋 + 𝜎𝑛
2𝐼

−1
𝑦2

𝜎 ∗ = 𝐾𝑋∗𝑋∗ - 𝐾𝑋∗𝑋 𝐾𝑋𝑋 + 𝜎𝑛
2𝐼

−1
𝐾𝑋𝑋∗+ 𝜎𝑛

2



Computational complexity 

• Problem for large data sets: training GP 𝑂(𝑛3), prediction 𝑂(𝑛2) per 
test case.

• Many approximations developed in recent years:
• Sparse GP

• Sparse pseudo-input (SPGP)



GP for Regression

• Prediction of continuous quantity 𝑦∗ from input 𝑥∗. 

• We can perform Bayesian inference exactly because all the integrals are 
Gaussian (Conditional / Marginal distribution of a Gaussian is also a Gaussian)
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Relationship to neural networks

“According to the hype of 1987, neural networks were meant to be 
intelligent models which discovered features and patterns in data. 
Gaussian processes in contrast are simply smoothing devices. How can 
Gaussian processes possibly replace neural networks? What is going on?”

MacKay, NeurIPS tutorial on GP, 1997



Relationship to neural networks

• Neural network with one hidden layer of N units, fully connected with 
i.i.d prior over the parameters.

• The NN distribution on its output converges to a GP as N → ∞.

• 2018 - extension to deep networks as GPs. 

(Jaehoon, ICLR 2019)
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Applications: predict hysteresis model

The beam response and the hysteresis behavior are jointly modeled using GP

R. Roussel, IPAC 2020

Hysteresis space Observation space

𝑝 𝑌𝑡+1 𝜽,𝝓, 𝒢 = 𝒩(𝜇 𝑀 𝐇0:𝑡+1 , 𝜎 𝑀 𝐇0:𝑡+1 , 𝑀 𝐇0:𝑡+1 )

Previous measurements

GP 

Hyperparameters
Hysteresis model parameters



Applications: predict anomalies

A. Hanuka, LCLS data

Find observations that deviate from the “normal behavior” by fitting 2 GPs 

- short term variations & long term trend (drifts) to online acquired data.

Fault caused ~5 hours of downtime



Key Points

• Gaussian processes are non-parametric - they provide a structured 
method of model and parameter selection. 

• A Gaussian process is defined by a mean and covariance function. 

• GPs can be used for regression or classification.

• Other approaches as special case: Linear regression, neural networks.

• Major limitation: inversion of 𝑛 ∗ 𝑛 matrix → scaling 𝑂(𝑛3).



Books and Resources

• The GP bible: Gaussian Processes for Machine Learning - C. Rasmussen 
and C. Williams. 2006 
• Free download: http://www.gaussianprocess.org/gpml/

• Especially chapters 1,2,4,5,8

• https://distill.pub/2019/visual-exploration-gaussian-processes/

http://www.gaussianprocess.org/gpml/


Thank you for your attention!

Questions?


