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- How to learn from data?

- Supervised learning (Linear regression)

. Generalization (over fitting, regularization, cross validation)
- Machine learning life cycle

- Practical concepts (data normalization, rescaling outliers, robustness)



Is" ) How are you feeling this morning?
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IS" ) Traditional Programming vs Machine Learning
A4 b
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was Al S ML>S DL
CLIE

. Artificial Intelligence (Al) — mimicking the
intelligence or behavioral pattern of humans or

. . Artificial Intelligence
living entity.

Machine learning

. Machine Learning (ML) — computers “learn”
from representations to complete specific tasks
without being explicitly programmed.

Deep learning

. Deep Learning (DL) — ML inspired by our
brain’s own neural network to learn hierarchical
representations.
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e Study of an algorithm that is able to
learn from data.
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Is‘. ) How to learn from data?
W44 A

Supervised

Given data X and label Y
& assume an underlying
function f(X)=Y, learn an
approximate function
that mimics f.

Classification

Unsupervised

Given data X only, learn
underlying structure.

Clustering

DDEF' [ | ll.
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Reinforcement

Learn to gain most
cumulative reward by
interacting with the
environment. Data may not
be static.

Facility control




I“‘ } How to learn from data? — Examples from Healthcare
W44 A

Supervised

Task: Predict patient
readmission rate.

Data: patients’ treatment
regime.
Labels: readmissions.

ML model: Build a model
that correlates treatment
regime with
readmissions.

Unsupervised

Task: Categorize MRI data
to normal or abnormal.

Data: MRI images.

ML model: Build a model
that learns features of
images to recognize
different patterns
(normal/abnormal).

Reinforcement

Task: Allocate scarce
medical resources to
handle various ER cases.

Data: treatment types, ER
cases.

ML model: Build a model
that learns treatment
strategies for current ER
cases.
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How to learn from data?

Supervised learning (Linear regression)

Generalization (Over fitting, Regularization, Cross validation)
Machine learning life cycle

Practical concepts (data normalization, rescaling outliers, Robustness)



Is"«s Supervised Learning
QrVAY

Y
Features Labels
A A
Number of Email Country | Customer | Email Type
new Length (K) (IP) Type
Recipients
(@ 0 2 Germany Gold Ham
4 1 4 Germany Silver Ham
on’ . 5 2 Nigeria Bronze Spam
%@(\ < " 2 4 Russia Bronze Spam
& @ 3 4 Germany Bronze Ham
X @ 0 1 USA Silver Ham
| @ 4 2 USA Silver Spam

Email Length

o ©
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o:'. ..'c:
° oo’.,
°o % =
®

New Recipients

How would you classify this data?



Is‘. ) Supervised Learning
QrVAY

When a new email is sent — could we
predict if it is ham/spam?

1. We place the new email in the space

2. Classify it according to the sub-space in
which it resides.

Email Length

Hypothesis

New Recipients



Is"«s Supervised Learning - Types
QP

Classification Regression
.. .: ..: .. ./,'
¥ _o® Discrete labels ® e % Continuous
. . % — dog/cat o ® ;/o ° variable — energy
® o0 ¢ . i o of a particle
® 0, © Sl
© €] " e}
e 06 0 O

Image
denoising
Image
classification
Object

localization




Is‘. ) Supervised Learning
QrVAY

Learning

Training set

Agorthmhi(

ypothesis

h

Hypothesis class Training set
Inputs: X Labels: Y
H={,h,,h...} wherein gh(x) y= ] P . ) o
X - o yl T \ 4
. X;T - - Y2T —
Loss function _ Learning
T T algorithm
Optimization method M M
X* — Hypothesis — Y?*
(new instance, (prediction, e.g.
e.g. email w/ ham/spam)

length & number

of recipients)



IS" ) Linear regression
QP

Learning

Training set ypothesis
Algorithm\ ( ] j‘

Hvpothesis class: Linear

|
H={,h| ReONL), Jh(x)= 6, + 87 = 6T | |

X

Loss function: Mean Squared Error

L=—3M (he(x)—y)? = — X6 |

Optimization method: Gradient Descent

5,54 Data points e _ o
° -

so] Regression

4.5
> 4.0
3.5 1
el
3.0 1

2.5 1

0.0 0.2 0.4 0.6 0.8 1.0

In this case, the exact solution:
Vil =1 =

i o _ Sl — (@) — )
LT S @)
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Is‘. ) Gradient descent - recap
QrVAY

Iteratively reduce loss

VL(Ho,Ql QN) = 6_61

i/

1. Initialize & randomly e
2. Repeat until convergence: R e

6:=0-aVL(0)

. Learning rate

15
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Optlmlze faster? Mini-batch Stochastic GD

SGD uses a subset of data for gradient calculation:

1. Create a batch = random subset of data.
2. Compute the gradient for the batch and update the parameters.

16



I“’ ) Loss functions for regression
QLY E

 Mean Absolute Error (MAE ,L1 loss)

1 m
MAE = — > lyi — ho(x) |
1=1

* Mean Squared Error (MSE, L2 loss)

m

1 2
MSE = — - — halx: Loss gets small when 1> but
m Zl <yz o( l)> may explode when1 <<
97—
° HUber Loss combines them together: L1

1 .2 when the loss is large,
Huber = {50’ .o.fora <o L2 when it's small.

dla| — 262 .. otherwise (hyperparameter: 5)
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- How to learn from data?

- Supervised learning (Linear regression)

- Generalization (Over fitting, Regularization, Cross validation)
- Machine learning life cycle

- Practical concepts (data normalization, rescaling outliers, robustness)



I“’ ) Generalization
QLY E

Generalization: model works well equally on the train and unseen datasets.

. .'
.. N , ) . underfitting : . «
Overfitting: model “memorized data”. . . L el
. 0‘. . . v . e, @
* Works well on train data but poorly on ST a
unseen data (test set). .
 Typical for complex model + low data . | o
L. . a good fit vs
statistics. e ° R 4t
¢ v % 1
For example: A polynomial of a higher + R
power makes the model more complex, or o overfitting —
flexible, and as a result a model can overfit. e o * sl &



Is‘. ) Generalization
QLY E

Generalization: model works well equally on the train and unseen datasets.

Error

< Underfitfing Overfitting > *te

| \
e *Eﬁ(()
Bes’rE Fit < 65\ .

TrOin’hQ Error

Model “complexity” : .

° [ 4
underfitting : v
° o0
. .."..
o Q“ @
° "
o
Vit
a good fit N b
b 2o’
. ea L ".'{.
oy ®
° (\4
o/o®
overfitting & °
x 'A:"
;. '.



Is‘. ) Bias-Variance tradeoff
A4 b

Bias: simplifying assumptions to make the model easier to approximate.
Variance: how much the model will change given different training data.
Trade-off: tension between the error introduced by both.

% [ 4
[ )
. underfitting ; o e®
> - o ¢ e
x Total Error °e o ¢ o’ Qe
q * e o e _° .
§ : . o High bias, Low variance
O
T .
8 ° " 4
= B
g i
o~ E , ¢ a good fit °
O g : Variance ° . s
t *e ’3 . . . e.' { ®
LLI A Low bias, Low variance
\d
Bias2 & o.
- — — @ .‘
: overfitting o ¢
i 1 " 'D‘t.) T ¢ P ’ ec )
Model "complexity P ne s
o 5 -

* Low bias, High variance



I““ Regularization
QP

 Additional constraints on model parameters.
* (Can help avoiding overfitting - prefer a simpler solution over complicated ones.

»Ctotal =L (y, h(X, 9)) + AR(Q)

model loss regularization loss

)\ regularization
parameter

* Basicregularization terms:
Li: R(O) = ||9|| = Y'160;|  Lasso - favors sparse solutions
L,: R(O) = ||9||2 = 291'2 Ridge - favors smaller values
Lii2: R(6) =Y|0;| + ﬁ@iz Elastic net

22



Is’] Regularization
QP

Ly: R(O) = |I6]] = X164 L,: R(6) = ||9||2 = ¥0,° Li+2: R(6) = X16;| + 86,

23



Ial ) Cross Validation
A4 b

2 Datasets:
. to optimize the model.
. to evaluate performance

after the model is tuned.

How to evaluate the model during

optimization?

e Split the train set into k-folds.

« Usei-th set as a “validation set” to
measure the performance of a
model trained on the rest (k-1
combined).

* Repeat k-times.

« Take the mean as a performance.

Split 1
Split 2
Split 3
Split 4

Split5

All Data
Training data Test data
Foldl || Fold2 || Fold3 || Fold4 || Fold5 | )
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
> Finding Parameters
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Foldl || Fold2 | Fold3 Fold4 || Fold5 |/

Final evaluation {

Test data

24


https://scikit-learn.org/stable/modules/cross_validation.html

Supervised learning — ML task of learning a function that maps an input to an output based on example
input-output pairs.

 Define a model, loss function and optimization method.

* Popular loss functions = Mean Squared Error (MSE), Mean Absolute Error (MAE).

* Popular optimization method = Gradient Descent (GD) or Stochastic GD (SGD) which uses a random subset of
train data.

Two datasets:
 Train set = dataset used to optimize models parameters.
 Test set = dataset used to benchmark the performance of the model.
* Features: traits/attributes that can be used to describe each data sample in a quantitative manner.

Generalization = model performs on the test dataset as well as the train dataset
 Overfit = memorization of data, a model performs well on train set but poorly on test set

Regularization = additional constraints on model parameters, can help avoiding overfitting.
e L2 prefers smaller weight values, L1 may lead to a sparse solution

Cross validation = splitting the train set to k-folds to create validation set(s) and measure model
performance and/or tune hyperparameters.
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How to learn from data?

Supervised learning (Linear regression)

Generalization (Over fitting, Regularization, Cross validation)
Machine learning life cycle

Practical concepts (data normalization, rescaling outliers, Robustness)



I," ) ML life cycle
A4 b

Maintain
& Data
Improve
2 N
8
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Deployment Choose
Q (Predict) model :"212{{"’
Train/Test
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improve

ML Life Cycle — Dataset Labeling Mai@tai”—"E

What purpose will this dataset serve? Depbﬁem Ch';e
 will the data be used for training, testing, both? (Predict ode!
 will the data be used to evaluate an existing algorithm?

- will the labels be used to determine the underlying distribution of the data’?"




Maintain '
& Data
improve

Is‘. ) ML Life Cycle — Dataset Cleaning
A4 b

Prepare the data for training and/or testing Deployment Choose
. (Predict) moae

 Remove unwanted observations

« Combine labels from multiple people (measure label quality) Train/Tost

 Remove (or add) bias for training/testing purposes
« Augmentation

L ST MO Ry e
"v T .@ ﬁ%txo! v i ﬁﬂO?:O o:‘!

A X »- .
& fﬁfb i1,©, 2 ,5? 229 ”
’."':3 O i ;"4; .g.', i

CONFIDENTIAL



“Is ML Life Cycle — Choosing a model

1. What is our task?

[MACHINE LEARNING }

/ N\

SUPERVISED
LEARNING

UNSUPERVISED
LEARNING

.
{CLASSIFICATION

REGRESSION

~N

-~

CLUSTERING }

Support Vector

Linear Regression,
GLM

K-Means, K-Medoids J

~

Machines Fuzzy C-Means
\
[ Di::r:iurryi?i(:m SVR, GPR Hierarchical ’

Naive Bayes

Nearest Neighbor

i

~

T

Neural Networks

Ensemble Methods

[ W e N Y

Decision Trees

Neural Networks

() ()

J

4

4
~

Gaussian Mixture 1
O —)

Hidden Markov
Model
Neural Networks
\

2. Choose simple models first,
don't overkill: Occam'’s razor
rule

Maybe a simple
linear regression on one feature
will do.

Yy =ao+ a1x

&

0 yzao—l—a1x+a2x2—|—a3x3—|—

CONFIDENTIAL

Maintain ~

&
improve

[

Deployment
(Predict)

~

Train/Test

Data

Choose
model

Consider the input (e.g.
pixels, derived features, etc.)

_|_angjn

30



/ V']
. . Malntain——-—r
I \1L Life Cycle — Train/Test
\'! A b ’
. . . . Deployment Choose
Model training: modify model parameters so that they describe the data. (Predict) model
Model testing: How general is the model when evaluated on new data? Train/Test
Before training After training Testing
N : 4 Performs poorly
o N " on the test data

Make sure to choose a test set that is representative of the real population!




Is}s ML Life Cycle — Deployment (MLOps)
A4 b

The model is trained and performs well on unseen data

- it's time to go on production (deployment)

)

(1

~

. New data in

/2. Data

cleansing

~

Remove outliers
Build features
needed
Standarise (scale)
data

~

3. Data storage
(databases)

Availiable: Fast
read/write of data
Consistent: data
won't change

Maintain T > 4

& Data

improve

[

Deployment
(Predict)

Choose
model

4. Prediction:
ML inference

Data is ready to be
consumed by the trained
model:

Train/Test

—)



1 . . . Maintain |
”[s ML Life Cycle — Maintain & Improve (MLOps)

But what happens if data changes? MLOps: make sure the deployed — Choose

model is correct and predicts well (Predict) model

5. Retrain with the new data: Train/Test
ﬁ_ Test again \ Retrain and substitute old model by the
l newly trained one
e | (@ N y

original test?
Old

Obdfelsa %et perfgrmance
10110 mp [od
11110

New
performance

Report to human...

Write a story on
You better have a ] [ Jira, will do ]

01100 :
il )
k%g%%g |:> E@ / ° [ look at this... \tgmorrow

)

New test set

L
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- How to learn from data?

- Supervised learning (Linear regression)

. Generalization (over fitting, regularization, cross validation)
- Machine learning life cycle

- Practical concepts (data normalization, rescaling outliers, robustness)



Is“ ) Practical concepts — data scaling
W44 A

Features have different ranges

Name Weight Price
Orange 15 1

Apple 18 3
Banana 12 2

Grape 10 5

“Weight” > “Price”

The algorithm assumes
that “Weight,” is more
important than “Price.”



I“‘ ) Practical concepts — data scaling
W44 A

Features have different ranges = Scaling the data so that all the features will be
comparable and have a similar effect on the learning models.

Original data Normalized data Standardized data

I 1 =

250

0.8

200

0.6

150

— T

|__|

100 04 T =1 l 1
, == - = - =5
-— N ™ <
Qo o o Qo S = = 5 Qo Qo o Qo
S S S S ] ] ] N S S S S
®© ® ® ® o ) ) o ®© ®© ®© ®
o o o o L L L L o o o O
L L L L L L L L



Is‘. ) Practical concepts — data scaling
W44 A

Another reason for feature scaling is that some algorithms converge much
faster with feature scaling than without it.

Gradient descent Gradient descent
without scaling after scaling variables
I >> I
A 0<z; <1
w9 J(w) 0<z,<1
A
w2 J(w)

, \r.yh f A

> W) > W,



Is"«s Practical concepts — scaling data with outliers
W44 b

. Data has marginal outliers = pre-processing can be very beneficial.

y .,

Full data £oomh 5
1200 A
5 B
4
1000 -

>
i ks
8 g4 o
S 800- 2 =
o 2 3%
= 3 S
[} 2 2
 — - =
% 600 - % 31 2
— — o
. 2 g
2 z 2g
3 400 2 S
2 ©
O

200 | |

1 .
o - - h —
0 2 4 6 8 10 12 14 2 :1 é ;3 1'0
Median Income Median Income

From scikit webpage



https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html

was Practical concepts — scaling data with outliers
W44 b

. Standard Scaler removes the mean and scales the data to unit variance.
- outliers have an influence when computing the mean & std.
- =2 cannot guarantee balanced feature scales in the presence of outliers.

x — mean(x)
Data after standard scaling

“ “ std(x)

Full data Zoom-in
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w

60 4 0.0 4
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Number of households
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-2 0 2 4 6 -2 -1 0 1 2 3
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https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html

Iﬂ'ls Practical concepts — scaling data with outliers
W44 b

. MinMax Scaler rescales the data set such that all feature values are in the
range [0, 1] = very sensitive to the presence of outliers.

Data after min-max scaling maX(X) _ mln(X)
L\g , : L_‘
Full data Zoom-in
5
1.0 A
0.0035 A
4
0.8 1 0.0030 .
3 2 "i
E E 0.0025 5
® 0.6 o 38
3 3 5
2 2 0.0020 A L
5 s g
- - o
3 04 8 0.0015 - , &
£ E £
= = .
= = E)
0.0010 A 3
0.2 4
0.0005 - 3
L e = — 0.0000 -
0.0 0.2 0.4 0.6 0.8 1.0 00 01 02 03 04 05 06 0.7
Median Income Median Income

From scikit webpage



https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html

Is"«s Practical concepts — scaling data with outliers
W44 b

Power transformer applies a power transformation to each feature to make
the data more Gaussian-like in order to stabilize variance and minimize
skewness.

Full data Zoom-in

S

w

N
Color mapping for values of y

Number of households
o
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-

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2
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From scikit webpage



https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html

Is"«s Practical concepts — scaling data with outliers
W44 b

Normalizer rescales the vector for each sample to have unit norm,
independently of the distribution of the samples = all samples are mapped
onto the unit circle.

Number of households

1.0 A sz

0.8 1

0.6

0.2 4

-

Full data

0.0

0.2 0.4 0.6 0.8 1.0
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1 1 { |
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Zoom-in
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From scikit webpage



https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html

uls Robustness

- Models are often not robust to small shifts in the distribution,
especially for high-dimensional data.

o= g o B G =4

“Dog” “Dog” “Sea Urchin” “Flatworm” ) “Strainer”

o=} A 0=
“Coffee Pot” “Coffee _Pot” “Toaster” “Computer”

I | B
L f
Yin et al. ; arXiv:1906.08988

Lopez et al. ; arXiv:1906.02611




su] Robustness

J)

Data augmentation can help
- Augmentation strategies don't need to be “physical”

Random flip left-right: Cutout / Random erasing:

Random shifts/ crops/
color operations: Mixup / Pairing images:

Az; + (1 — A)z;
Ayi — (1 = A)y;

&
Y




Given OOD inputs (e.g. using the same machine in a
different operation mode), it is necessary to understand
how robust the ML model is and how well it generalizes on

unfamiliar data.

Test shot within the trained distribution
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https://arxiv.org/abs/2105.04654

Ia" ) Other learning tasks
QLY

Other supervised learning settings:

Multi-class or Multi-label.
Semi-supervised: make use of labeled and un-labeled data.

Incremental learning — learns one instance at a time.

Active learning - learning algorithm interactively query the system to
get new data points.

Transfer learning - model developed for a task is reused as the starting
point for a model on a second task



Is{s Key points
CLVAY

Data integration, selection, cleaning and pre-processing
(normalization, outliers).

Models — favor simple over complex.

Interpreting results - avoid GIGO, uncertainty, robustness.



Thank you for your attention!

Questions?




