

Machine Learning: Introduction

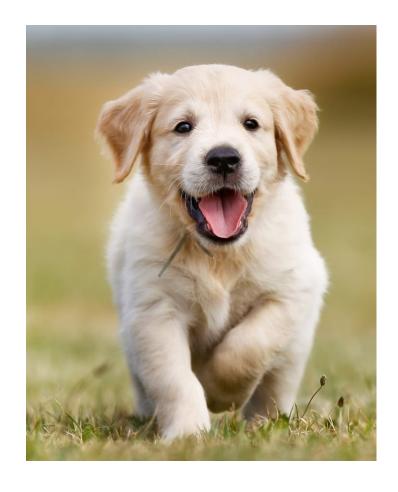
Presenter: Adi Hanuka

Day 3

Outline

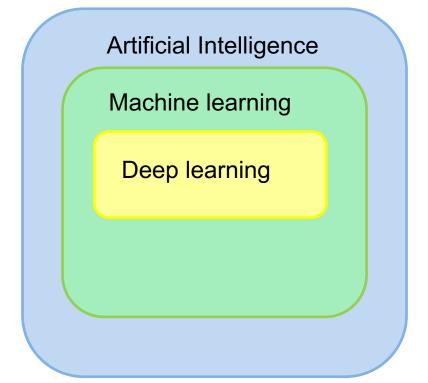
- How to learn from data?
- Supervised learning (Linear regression)
- Generalization (over fitting, regularization, cross validation)
- Machine learning life cycle
- Practical concepts (data normalization, rescaling outliers, robustness)

How are you feeling this morning?



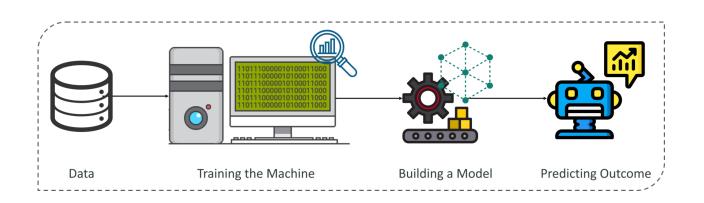
Traditional Programming vs Machine Learning

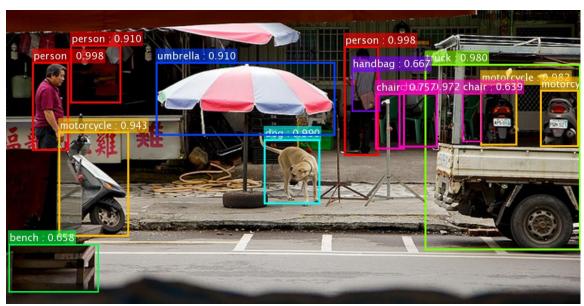
- Artificial Intelligence (AI) mimicking the intelligence or behavioral pattern of humans or living entity.
- Machine Learning (ML) computers "learn" from representations to complete specific tasks without being explicitly programmed.
- Deep Learning (DL) ML inspired by our brain's own neural network to learn hierarchical representations.



What is Machine Learning?

- Study of an algorithm that is able to learn from data.
- A cross-road of statistics (probability)
 and computer science (algorithms)
 where learning is casted to an
 optimization process.





How to learn from data?

Supervised

Given data X and label Y & assume an underlying function f(X)=Y, learn an approximate function that mimics f.

Unsupervised

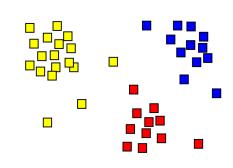
Given data X only, learn underlying structure.

Reinforcement

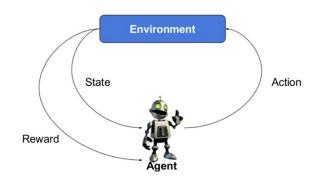
Learn to gain most cumulative reward by interacting with the environment. Data may not be static.

Classification

Clustering



Facility control



How to learn from data? – Examples from Healthcare

Supervised

Task: Predict patient readmission rate.

Data: patients' treatment regime.

Labels: readmissions.

Unsupervised

Task: Categorize MRI data to normal or abnormal.

Data: MRI images.

ML model: Build a model that correlates treatment regime with readmissions.

ML model: Build a model that learns features of images to recognize different patterns (normal/abnormal).

Reinforcement

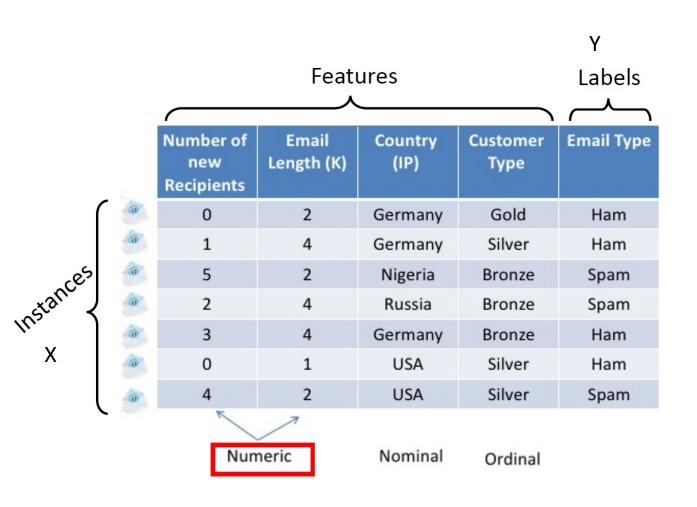
Task: Allocate scarce medical resources to handle various ER cases.

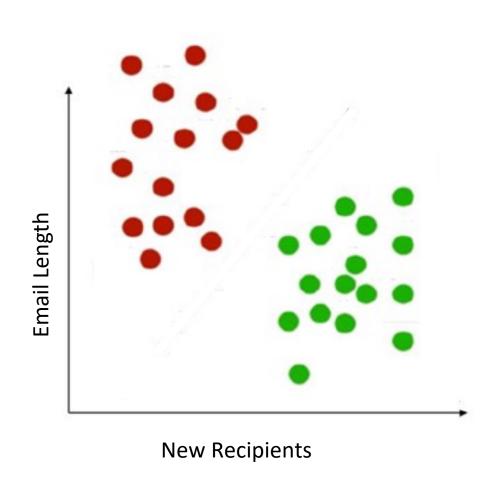
Data: treatment types, ER cases.

ML model: Build a model that learns treatment strategies for current ER cases.

- How to learn from data?
- Supervised learning (Linear regression)
- Generalization (Over fitting, Regularization, Cross validation)
- Machine learning life cycle
- Practical concepts (data normalization, rescaling outliers, Robustness)

Supervised Learning



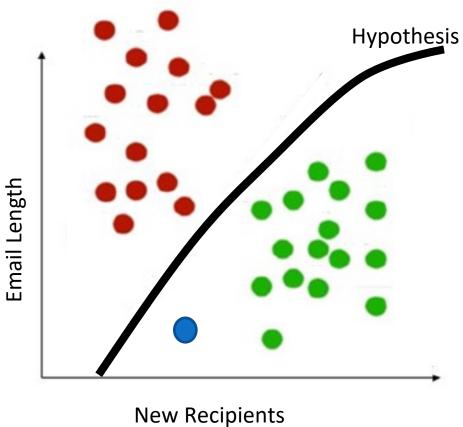


How would you classify this data?

Supervised Learning

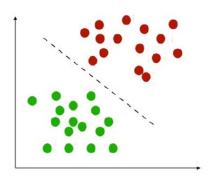
When a new email is sent – could we predict if it is ham/spam?

- 1. We place the new email in the space
- 2. Classify it according to the sub-space in which it resides.



Supervised Learning - Types

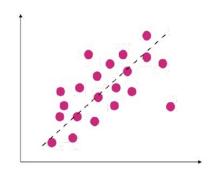
Classification



Discrete labels
- dog/cat

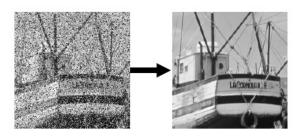
Image classification

Regression



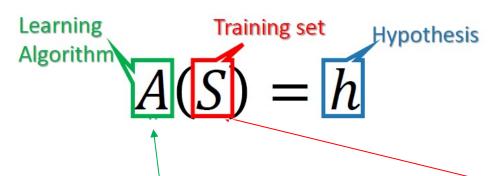
Continuous variable – energy of a particle

Image denoising

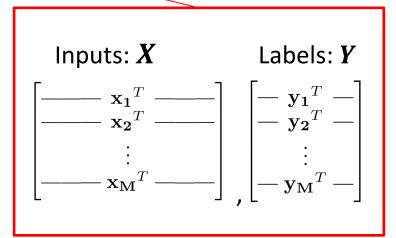


Object localization

Supervised Learning

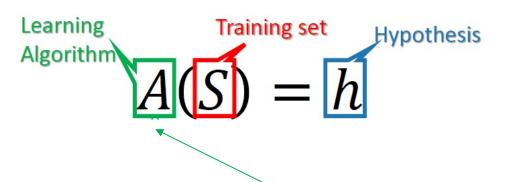


- Hypothesis class $\mathcal{H}=\{_1h,_2h...\}$ wherein $_{\theta}h(x)$ $y\approx$
- Loss function
- Optimization method





Linear regression



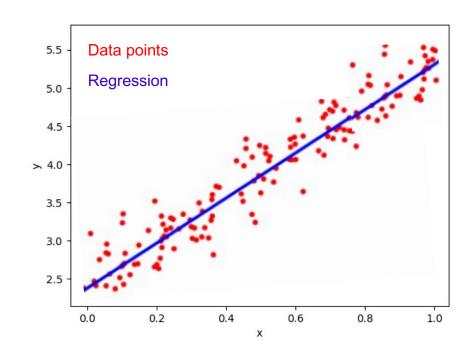
Hypothesis class: Linear

$$\mathcal{H} = \{_{\boldsymbol{\theta}} h \mid \mathbb{R} \boldsymbol{\epsilon} \boldsymbol{\theta}^{N+1} \}, \ _{\boldsymbol{\theta}} h(\boldsymbol{x}) = \theta_0 + \widetilde{\boldsymbol{\theta}}^T \boldsymbol{x} = \boldsymbol{\theta}^T \begin{pmatrix} 1 \\ 1 \\ \boldsymbol{x} \end{pmatrix}$$

Loss function: Mean Squared Error

$$\mathcal{L} = \frac{1}{M} \sum_{i=1}^{M} (h_{\theta}(\mathbf{x}_i) - y_i)^2 = \frac{1}{M} ||\mathbf{X}\boldsymbol{\theta} - \mathbf{y}||^2$$

Optimization method: Gradient Descent



In this case, the exact solution:

$$\nabla_{\boldsymbol{\theta}} \mathcal{L} = 0 \Longrightarrow \qquad \begin{array}{c} \boldsymbol{\theta}_{0} = \langle y \rangle + \boldsymbol{\theta}_{1} \langle x \rangle \\ \\ \boldsymbol{\theta}_{1} = \frac{\sum (x_{i} - \langle x \rangle)(y_{i} - \langle y \rangle)}{\sum (x_{i} - \langle x \rangle)^{2}} \end{array}$$

Gradient descent - recap

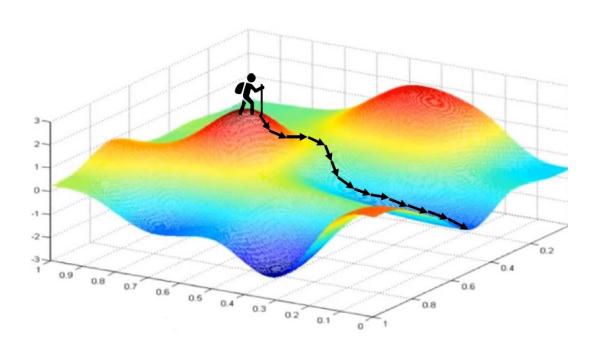
Iteratively reduce loss

$$\boldsymbol{\nabla} \mathcal{L}(\boldsymbol{\theta}_0, \boldsymbol{\theta}_1 \dots \boldsymbol{\theta}_N) = \begin{pmatrix} \frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}_0} \\ \frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}_1} \\ \vdots \\ \frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}_N} \end{pmatrix}$$

- 1. Initialize θ randomly
- 2. Repeat until convergence:

$$\boldsymbol{\theta} \coloneqq \boldsymbol{\theta} - \alpha \nabla \mathcal{L}(\boldsymbol{\theta})$$

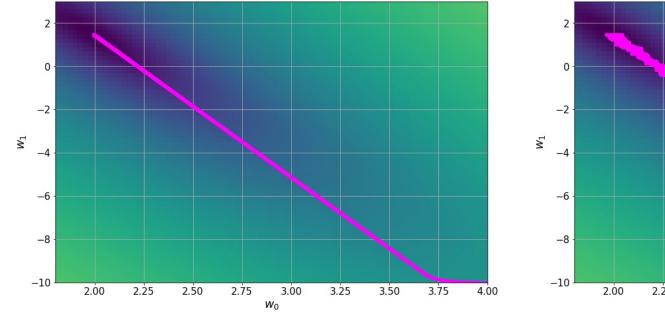
 α : Learning rate

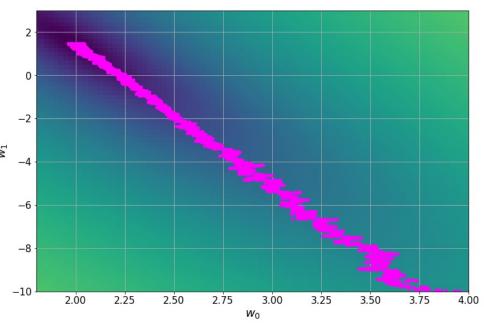


Optimize faster? Mini-batch Stochastic GD

SGD uses a subset of data for gradient calculation:

- 1. Create a batch = random subset of data.
- 2. Compute the gradient for the batch and update the parameters.





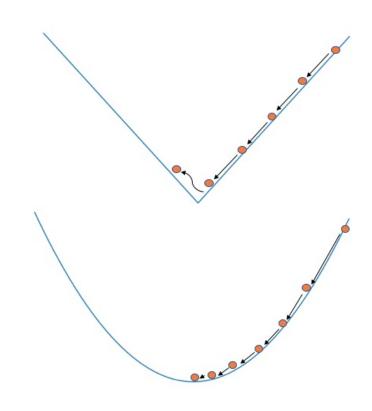
Loss functions for regression

Mean Absolute Error (MAE ,L1 loss)

$$MAE = \frac{1}{m} \sum_{i=1}^{m} |y_i - h_{\theta}(\mathbf{x}_i)|$$

Mean Squared Error (MSE, L2 loss)

$$\mathrm{MSE} = \frac{1}{m} \sum_{i=1}^{m} \left(y_i - h_{\theta}(\boldsymbol{x}_i) \right)^2$$
 Loss gets small when 1> but may explode when 1 <<



Huber Loss

Huber =
$$\begin{cases} \frac{1}{2}a^2 \dots \text{ for } a \leq \delta \\ \delta|a| - \frac{1}{2}\delta^2 \dots \text{ otherwise} \end{cases}$$

combines them together: L1 when the loss is large, L2 when it's small. (hyperparameter: δ)

Outline

- How to learn from data?
- Supervised learning (Linear regression)
- Generalization (Over fitting, Regularization, Cross validation)
- Machine learning life cycle
- Practical concepts (data normalization, rescaling outliers, robustness)

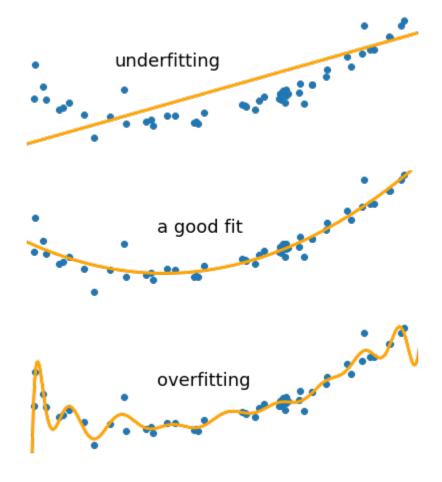
Generalization

Generalization: model works well equally on the train and unseen datasets.

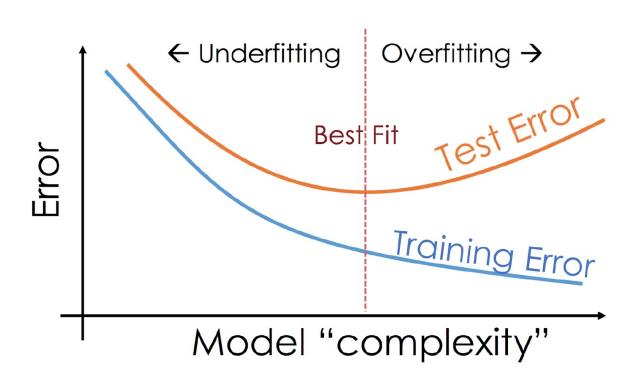
Overfitting: model "memorized data".

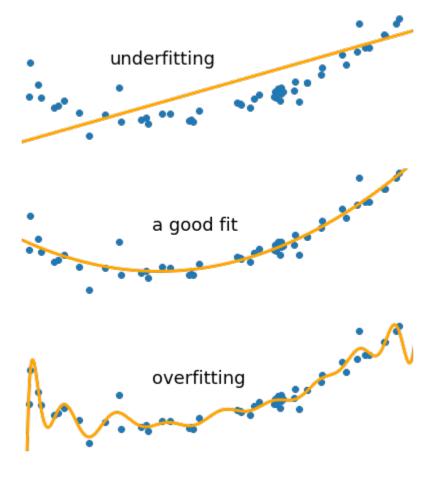
- Works well on train data but poorly on unseen data (test set).
- Typical for complex model + low data statistics.

For example: A polynomial of a higher power makes the model more complex, or flexible, and as a result a model can overfit.



Generalization: model works well equally on the train and unseen datasets.



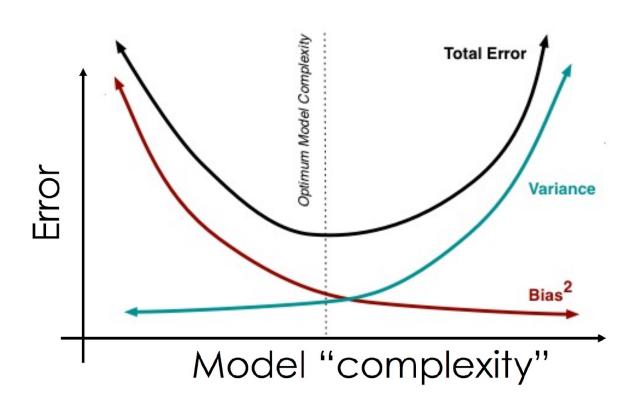


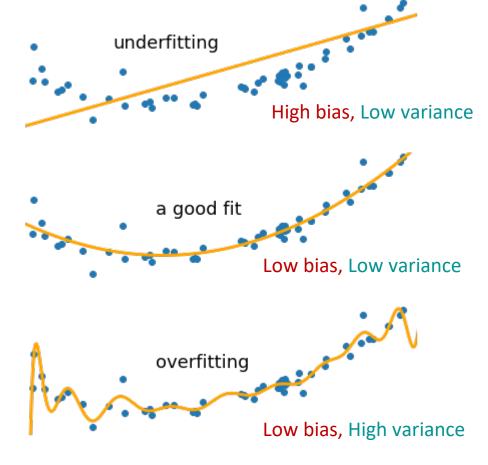
Bias-Variance tradeoff

Bias: simplifying assumptions to make the model easier to approximate.

Variance: how much the model will change given different training data.

Trade-off: tension between the error introduced by both.





Regularization

- Additional constraints on model parameters.
- Can help avoiding overfitting prefer a simpler solution over complicated ones.

$$\mathcal{L}_{\text{total}} = \mathcal{L}(\mathbf{y}, h(\mathbf{x}, \boldsymbol{\theta})) + \lambda R(\boldsymbol{\theta})$$

model loss

regularization loss

 λ : regularization parameter

Basic regularization terms:

$$L_1$$
: $R(\theta) = ||\theta|| = \sum |\theta_i|$

Lasso - favors sparse solutions

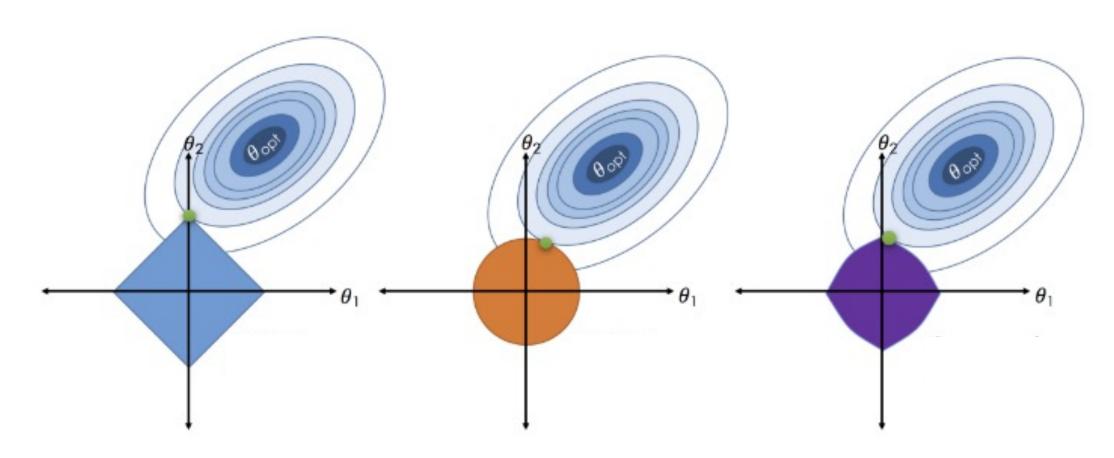
$$L_2$$
: $R(\theta) = ||\theta||^2 = \sum \theta_i^2$

Ridge - favors smaller values

$$L_{1+2}$$
: $R(\theta) = \sum |\theta_i| + \beta \theta_i^2$

Elastic net

Regularization



$$L_1$$
: $R(\theta) = ||\theta|| = \sum |\theta_i|$

$$L_2$$
: $R(\theta) = ||\theta||^2 = \sum \theta_i^2$

$$L_{1+2}: R(\theta) = \sum |\theta_i| + \beta \theta_i^2$$

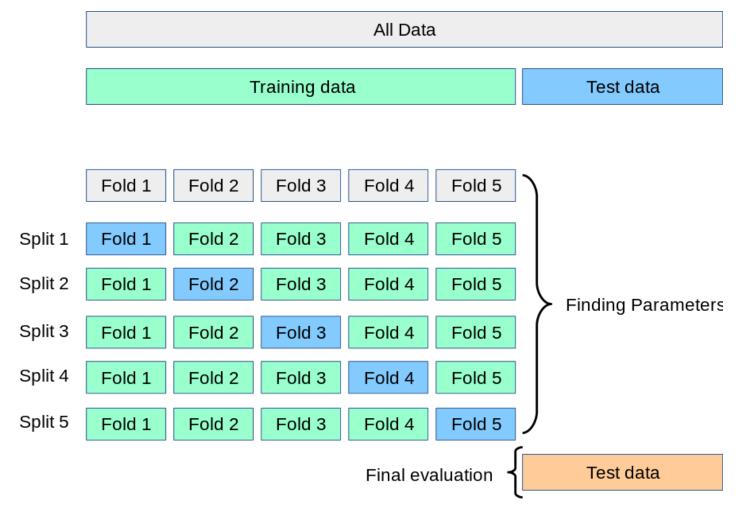
Cross Validation

2 Datasets:

- Train set to optimize the model.
- Test set to evaluate performance after the model is tuned.

How to evaluate the model during optimization?

- Split the train set into k-folds.
- Use i-th set as a "validation set" to measure the performance of a model trained on the rest (k-1 combined).
- Repeat k-times.
- Take the mean as a performance.



From scikit webpage

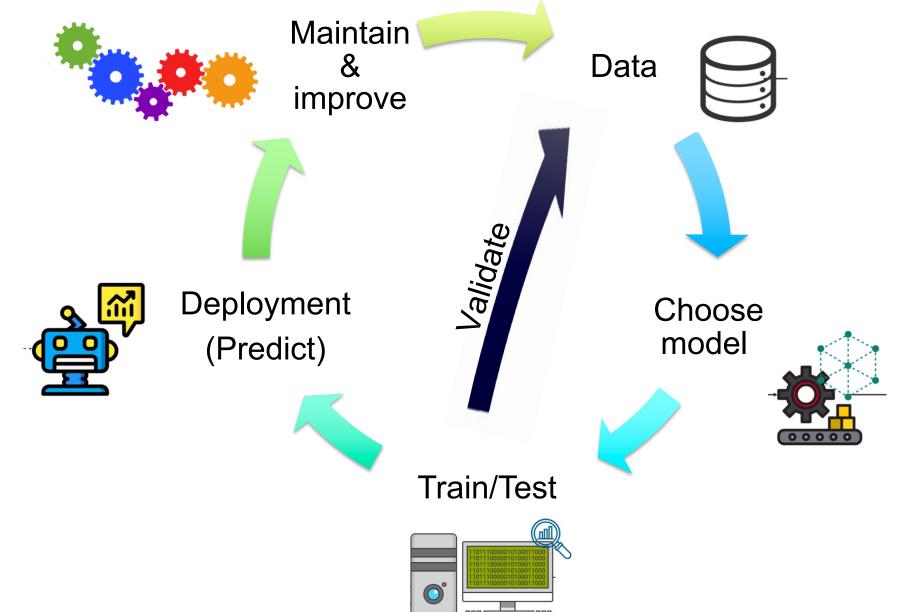
Intermediate summary

- Supervised learning ML task of learning a function that maps an input to an output based on example input-output pairs.
 - Define a model, loss function and optimization method.
 - Popular loss functions = Mean Squared Error (MSE), Mean Absolute Error (MAE).
 - Popular optimization method = Gradient Descent (GD) or Stochastic GD (SGD) which uses a random subset of train data.

Two datasets:

- Train set = dataset used to optimize models parameters.
- Test set = dataset used to benchmark the performance of the model.
- Features: traits/attributes that can be used to describe each data sample in a quantitative manner.
- Generalization = model performs on the test dataset as well as the train dataset
 - Overfit = memorization of data, a model performs well on train set but poorly on test set
- Regularization = additional constraints on model parameters, can help avoiding overfitting.
 - L2 prefers smaller weight values, L1 may lead to a sparse solution
- Cross validation = splitting the train set to k-folds to create validation set(s) and measure model performance and/or tune hyperparameters.

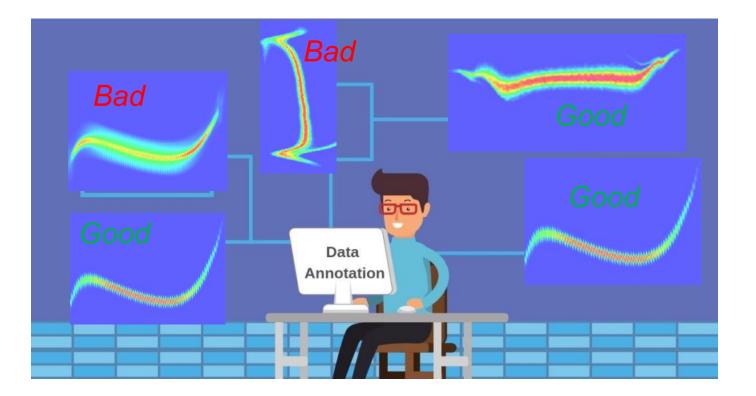
- How to learn from data?
- Supervised learning (Linear regression)
- Generalization (Over fitting, Regularization, Cross validation)
- Machine learning life cycle
- Practical concepts (data normalization, rescaling outliers, Robustness)

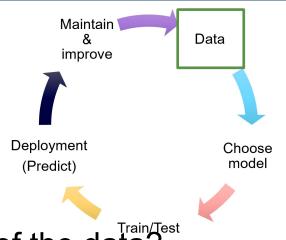


ML Life Cycle – Dataset Labeling

What purpose will this dataset serve?

- will the data be used for training, testing, both?
- will the data be used to evaluate an existing algorithm?
- will the labels be used to determine the underlying distribution of the data?

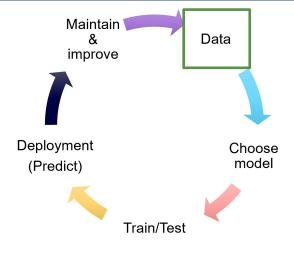




ML Life Cycle – Dataset Cleaning

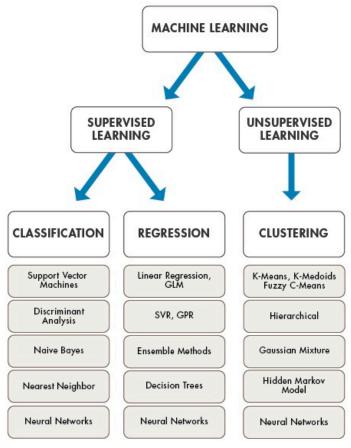
Prepare the data for training and/or testing

- Remove unwanted observations
- Combine labels from multiple people (measure label quality)
- Remove (or add) bias for training/testing purposes
- Augmentation



ML Life Cycle – Choosing a model

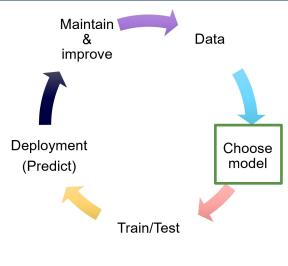
1. What is our task?

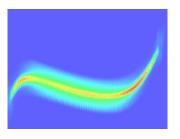


2. Choose simple models first, don't overkill: Occam's razor rule

> Maybe a simple linear regression on one feature will do.

$$y = a_0 + a_1 x$$





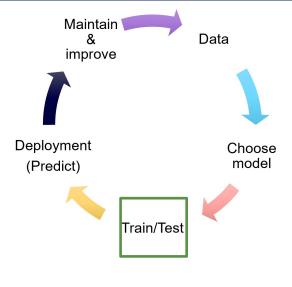
Consider the input (e.g. pixels, derived features, etc.)

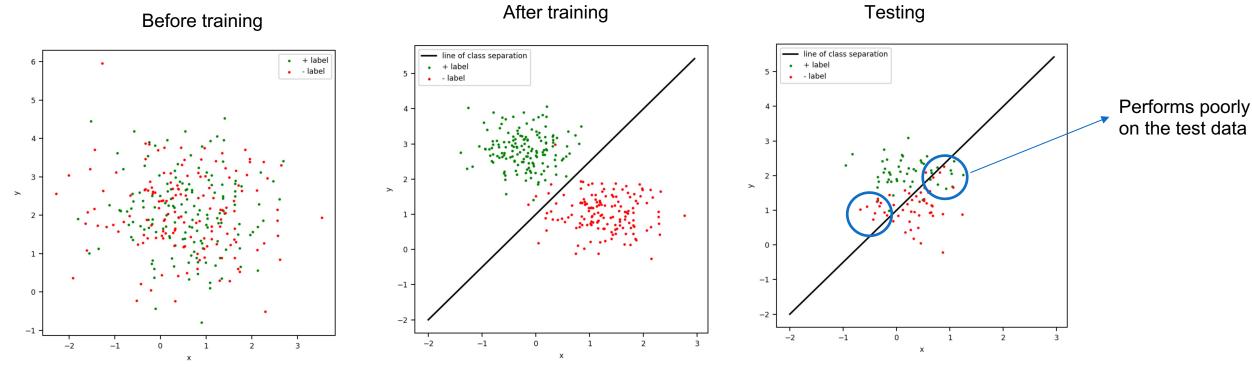
$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n$$

ML Life Cycle – Train/Test

Model training: modify model parameters so that they describe the data.

Model testing: How general is the model when evaluated on new data?



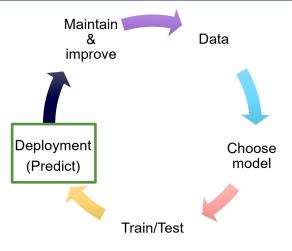


Make sure to choose a test set that is representative of the real population!

ML Life Cycle – Deployment (MLOps)

The model is trained and performs well on unseen data

→ it's time to go on production (deployment)



1. New data in

10110 11110

01100 10110 11110

2. Data cleansing

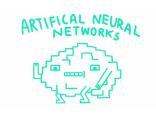
- Remove outliers
- Build features needed
- Standarise (scale) data

3. Data storage (databases)

- Availiable: Fast read/write of data
- Consistent: data won't change

4. Prediction: ML inference

Data is ready to be consumed by the trained model:





ML Life Cycle – Maintain & Improve (MLOps)

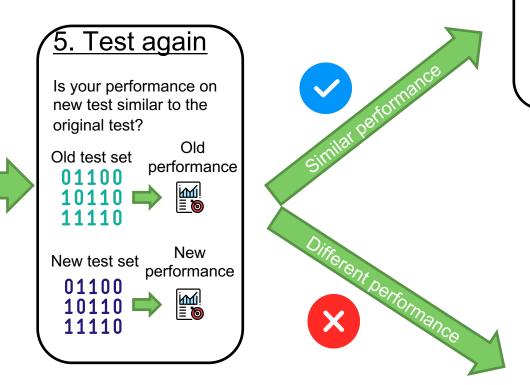
Maintain & Data improve

Deployment Choose (Predict) Choose

Train/Test

But what happens if data changes? *MLOps: make sure the deployed model is correct and predicts well*

Retrain and substitute old model by the newly trained one



Report to human...

You better have a look at this...

Write a story on Jira, will do tomorrow

- How to learn from data?
- Supervised learning (Linear regression)
- Generalization (over fitting, regularization, cross validation)
- Machine learning life cycle
- Practical concepts (data normalization, rescaling outliers, robustness)

Practical concepts – data scaling

Features have different ranges

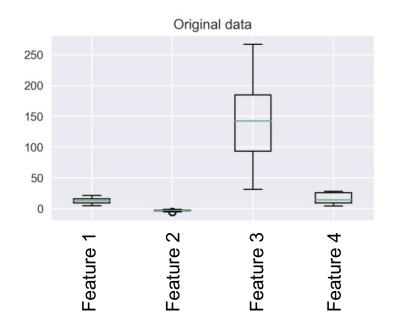
Name	Weight	Price
Orange	15	1
Apple	18	3
Banana	12	2
Grape	10	5

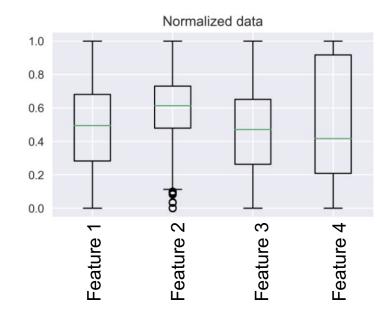
"Weight" > "Price"

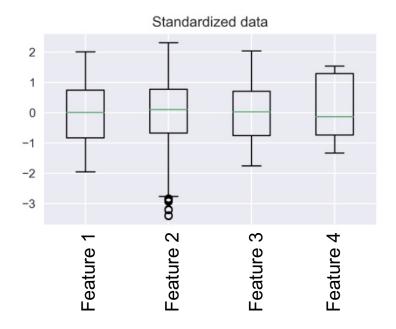
The algorithm assumes that "Weight," is more important than "Price."

Practical concepts – data scaling

Features have different ranges \rightarrow Scaling the data so that all the features will be comparable and have a similar effect on the learning models.



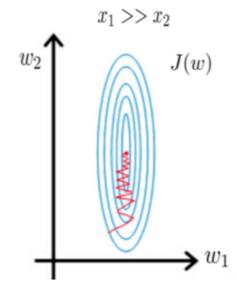




Practical concepts – data scaling

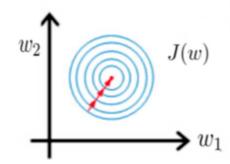
Another reason for feature scaling is that some algorithms converge much faster with feature scaling than without it.

Gradient descent without scaling

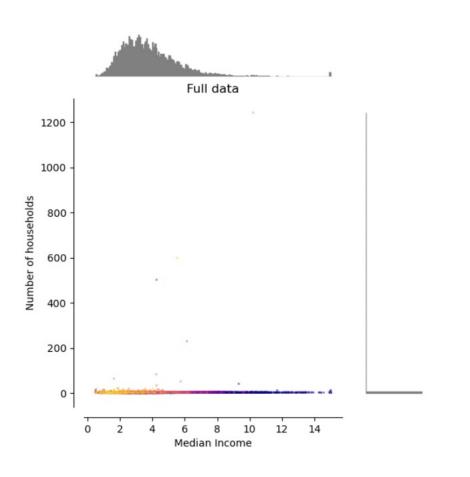


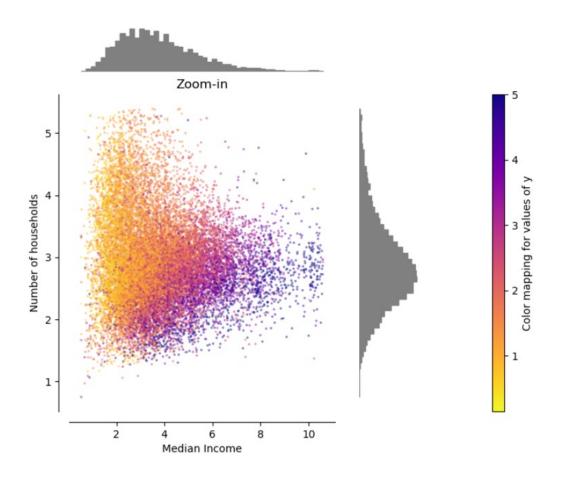
Gradient descent after scaling variables

$$0 \le x_1 \le 1$$
$$0 \le x_2 \le 1$$

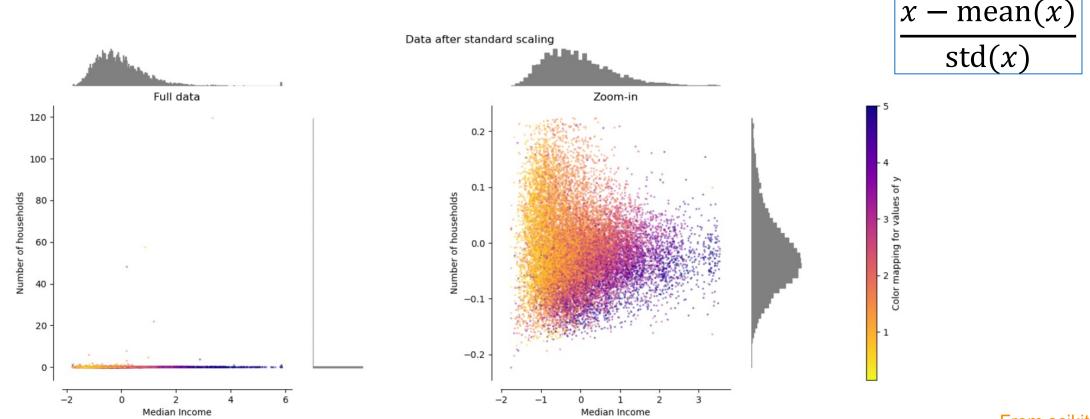


Data has marginal outliers -> pre-processing can be very beneficial.



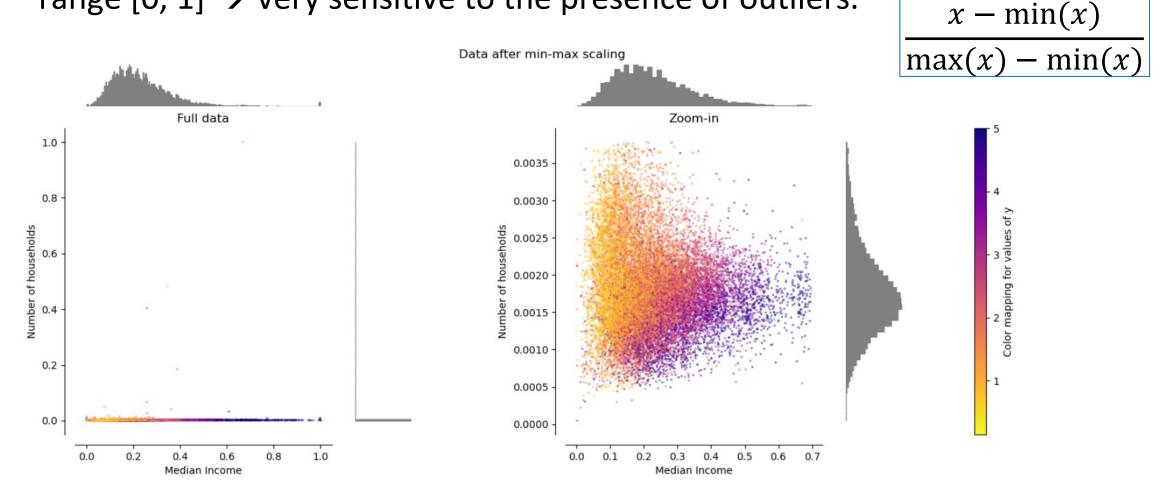


- Standard Scaler removes the mean and scales the data to unit variance.
 - outliers have an influence when computing the mean & std.

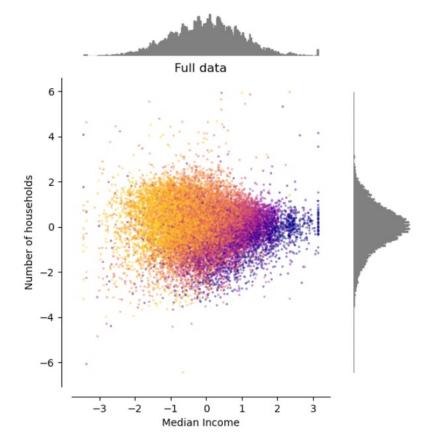


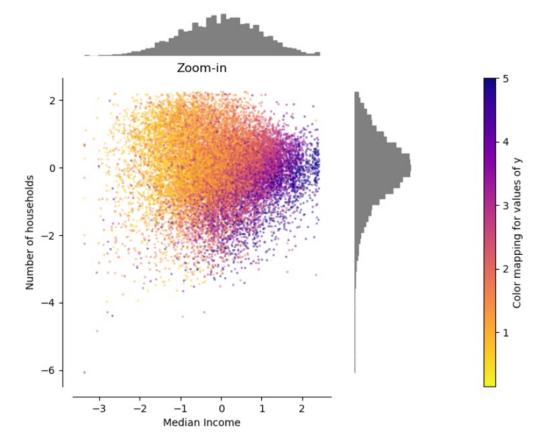
MinMax Scaler rescales the data set such that all feature values are in the

range $[0, 1] \rightarrow$ very sensitive to the presence of outliers.

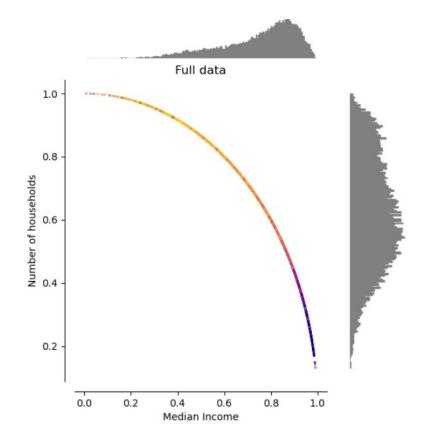


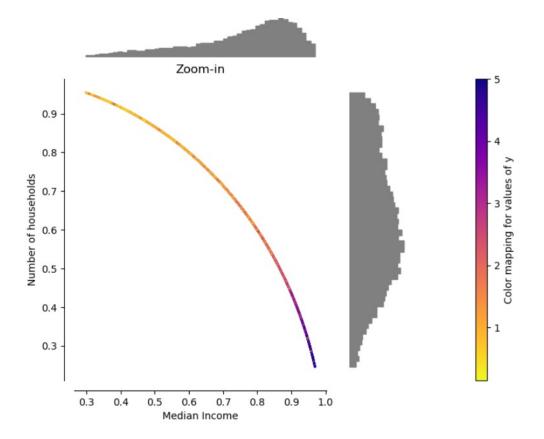
 Power transformer applies a power transformation to each feature to make the data more Gaussian-like in order to stabilize variance and minimize skewness.



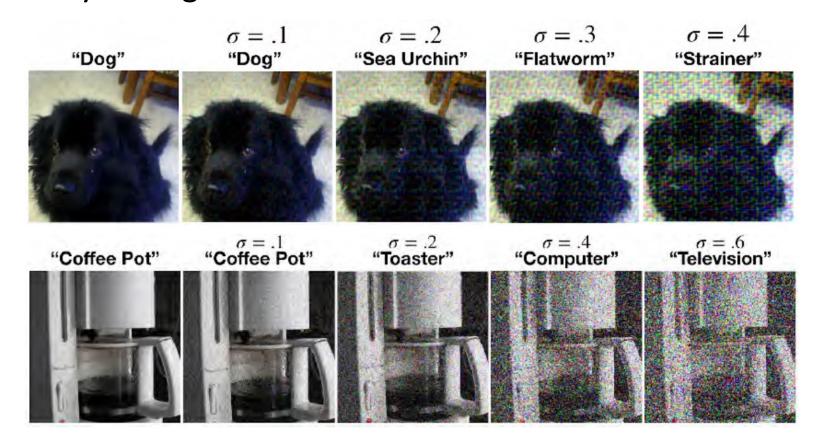


 Normalizer rescales the vector for each sample to have unit norm, independently of the distribution of the samples → all samples are mapped onto the unit circle.





 Models are often not robust to small shifts in the distribution, especially for high-dimensional data.



Yin et al.; arXiv:1906.08988 Lopez et al.; arXiv:1906.02611

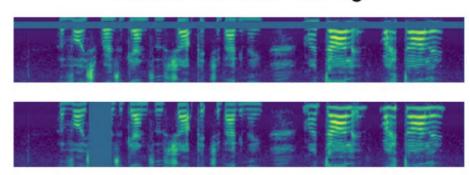
Data augmentation can help

Augmentation strategies don't need to be "physical"

Random flip left-right:

Random shifts/ crops/ color operations:

Cutout / Random erasing:

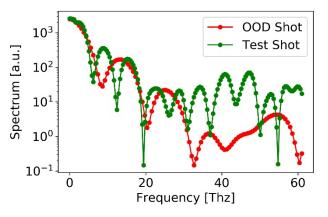


Mixup / Pairing images:

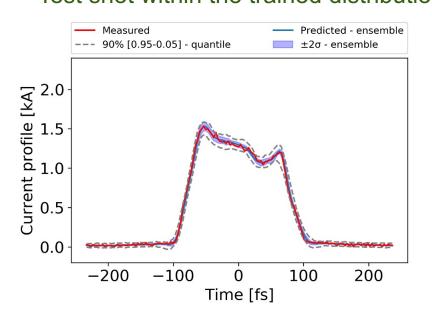
$$\tilde{x} = \lambda x_i + (1 - \lambda)x_j$$
$$\tilde{y} = \lambda y_i + (1 - \lambda)y_j$$

Out-of-Distribution (OOD) Robustness

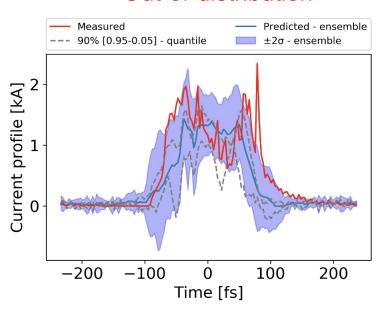
 Given OOD inputs (e.g. using the same machine in a different operation mode), it is necessary to understand how robust the ML model is and how well it generalizes on unfamiliar data.



Test shot within the trained distribution



Out-of-distribution



Out-of-Distribution → Higher Uncertainty

Other learning tasks

- Other supervised learning settings:
 - Multi-class or Multi-label.
 - Semi-supervised: make use of labeled and un-labeled data.
- Incremental learning learns one instance at a time.
- Active learning learning algorithm interactively query the system to get new data points.
- Transfer learning model developed for a task is reused as the starting point for a model on a second task

- Data integration, selection, cleaning and pre-processing (normalization, outliers).
- Models favor simple over complex.
- Interpreting results avoid GIGO, uncertainty, robustness.

Thank you for your attention!

