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W) Example: Free-Electron lasers (e.g. European XFEL, LCLS 1)

Cryoplant
- LCLS-II
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Undulator Hutches
Beam Beam
Switchyard Dumps

SC Linac Beamline
Cu Linac Beamline

Example of tuning parameters:
e Strength of steerer magnets
e Strength of FODO quadrupoles

Example of objective:
Maximize amount of X-ray

photons, during operation
* RF parameters (phase and

accelerating gradient)

Source: https://Icls.slac.stanford.edu/Icls-ii



Ia'“ Example: storage ring (e.g. ALS, SPEAR3)
W44 b
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Example of objective: Example of tuning parameters:
Maximize injection efficiency Strength of sextupole magnets

Source: https://journals.aps.org/prab/pdf/10.1103/PhysRevSTAB.18.084001 5



Is" ) Example: electron injector for LCLS-II
W44 A

Solenoids

\’ \

[ . [l (

[ [ L 7

— |
T Standard TESLA TCryomoduIe with 8
Laser Pulse 9-cell cavitity TESLA cavities

Example of objective: Example of tuning parameters:
Minimize bunch length and * Duration and transverse size of laser pulse
emittance, at the end of the  Magnetic field in solenoids
injector * Buncher field

* Accelerating gradient in RF cavities

Source: https://accelconf.web.cern.ch/IPAC2014/papers/wepro015.pdf 6



Ial ] Optimization for particle accelerators: motivation
LA

Design study, before building hardware:

* Aim: choose best nominal parameters, predict optimal performance
* Mainly based on numerical simulations

* Some unique features: evaluation in parallel

Online tuning of existing hardware:

* Aim: get optimal performance during operation ; maintain despite drifts

* Mainly based on real-time measurements

 Some unique features: noise, hysteresis (e.g. magnetic elements), drifts (e.g.
temperature)
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Is" ] Optimization: general definition and notation
LA

Definition (minimization)

‘Find X, suchthat Vx € 2, f(xin) < f(x) ‘

min?

/A {

x: vector of input parameters (“knobs”, “tuning parameters”)
f: function to minimize (“objective function”)
Q: domain (limited by constraints on accelerator parameters)

Example: injector
Minimizing emittance by tuning solenoids and accelerating cavities

Solenoids f — GJ—

gl | (

= l. Lmﬂm} B ( Bolenoid >
M | L= E. .
T Standard TESLA TCryomoduIe with 8 CCL’U’Lty

Laser Pulse 9-cell cavitity TESLA cavities




Is" ) Efficient optimization
W44 A

A- : . . l
i ‘Fmd x,.., With few evaluations of f ‘

Motivation: evaluations of f are usually costly

* Design studies:
Evaluations of f require computationally
expensive numerical simulations

* Online tuning:
Evaluations of f take time on the machine
Parameters of the machine may drift if it
takes too long to find the minimum.

10



Is‘. ) Minimization vs maximization
QrVAY

Minimization:

‘Findx

min?

suchthat Vx € 2, f(X;n) < f(X) ‘

Maximization:

‘Find X,., suchthat Vx € 0, f(xpin) = f(x) ‘

min?

In order to maximize a function f, one can simply pass the function —f
to a minimization algorithm.

In the rest of this course, we will focus on minimization algorithmes.



Is’l\'} Naive algorithm: grid search
A4 )

Algorithm:

Systematically evaluate f at points
separated by a fixed step in each direction.
At the end: find the best point among
them.

Practical consideration:

 Takes a long time to even reach
interesting regions.

* Scales badly with dimensionality!
e Does not use the information from

previous evaluations of f to decide
which point to evaluate next.

12



m’"s] Naive algorithm: random search
L<AA4 A

Algorithm:
Evaluate f at randomly chosen points.
At the end: find the best point among them.

Practical consideration:

* May evaluate points that are close to
each other and do not bring significantly
more information

* Scales badly with dimensionality!

* Does not use the information from

previous evaluations of f to decide which
point to evaluate next.

13



Is‘n Human intervention
QP

Algorithm:
A human being chooses the points to evaluate

Practically consideration

* Humans sometimes accumulate unique
experience/knowledge of a given accelerator

® But: slow reaction time

* Biases, bad at dealing with more than 1 or 2 dimensions
(usually perform 1D search)

14
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Iﬂ'] Nelder-Mead simplex: algorithm
CLVAY

2D example: 3 initial points
®* Choose N+1 arbitrary initial points

(where N is the dimension of the
input x of the objective function f)
Evaluate f at these points.

Note:

These points define a “simplex”.

(The points are the “vertices” of the simplex.)
- In 2D (N=2), a simplex is a triangle.
- In 3D (N=3), a simplex is a terahedron.

16



Is’] Nelder-Mead simplex: algorithm
CLVAY

®* Choose N+1 arbitrary initial points
(where N is the dimension of the
input x of the objective function f)
Evaluate f at these points.

* lteratively:
- Move vertices according to a
set of basic rules (see next slide)
- Evaluate objective function f |
at the new vertices -

®* These rules effectively result in the simplex moving towards the minimum.
The N+1 vertices allow to “feel” the direction in which to move
(without calculating the gradient).

17



Is‘] Nelder-Mead simplex: basic rules
W44 b

Pick the worse point
(i.e. the one with the
highest value of f)

N

Exact algorithm with code: Press et al.,, “Numerical Recipes” 18



Is‘] Nelder-Mead simplex: basic rules
W44 b

Try to perform a reflection

Pick the worst point through the barycenter of
(i.e. the one with the || the other points ;
highest value of f) keep the new point if the

value of fimproved

T
/

~
~
~
~
~
~
:\‘

Heuristic: try to move away
from the high values of f

Exact algorithm with code: Press et al., “Numerical Recipes”

19



Is‘] Nelder-Mead simplex: basic rules
W44 b

Try to perform a reflection

Pick the worst point through the barycenter of
(i.e. the one with the || the other points ;
highest value of f) keep the new point if the

value of fimproved

Did it become the
best point of the
simplex?

N

Exact algorithm with code: Press et al., “Numerical Recipes”

T

Try to perform a dilation
in the same direction ;
keep the new point if the
value of fimproved.

~s
~

)

! ~

I ~
I

)

Heuristic: accelerate in the
the direction in which fdecreases

20



E" Nelder-Mead simplex: basic rules

Simplex accelerating
in the direction of decreasing f:

~s
] ~

~
\\
1 ~
1 %
~




Is‘n Nelder-Mead simplex: basic rules
W44 b

Try to perform a reflection

Pick the worst point through the barycenter of
(i.e. the one with the || the other points ;
highest value of f) keep the new point if the

value of fimproved

Did it become the
best point of the
simplex?

N

[s it still the
worse point
of the simplex?

v

-
/
/
[ 4
/
/
/
/
/
/
/
/

Try to perform a contraction
towards the barycenter of the

other points of the original simplex.

Heuristic: squeeze into
narrow valleys of f

Exact algorithm with code: Press et al., “Numerical Recipes”
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~
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~
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[ S ——

Try to perform a dilation
in the same direction ;
keep the new point if the
value of fimproved.

~s

22



Ih” \ Nelder-Mead simplex: basic rules
W44 A

Squeeze into narrow valleys of f




Pick the worst point
(i.e. the one withthe |7
highest value of f)

Try to perform a reflection
through the barycenter of
the other points ;

keep the new point if the

value of fimproved

Did it become the

best point of the
simplex?

Try to perform a dilation
in the same direction ;

N

[s it still the
worse point
of the simplex?

v

-
/
/
[ 4
/
/
/
/
/
/
/
/

Try to perform a contraction
towards the barycenter of the
other points of the original simplex.

keep the new point if the
value of fimproved.

~s

No improvement?

Improvement?

A\ 4

Keep the new point

Exact algorithm with code: Press et al., “Numerical Recipes”
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Try to perform a contraction
towards the best point of the
simplex

~

/
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Heuristic: shrink
into a trough of f 24



Pick the worst point
(i.e. the one withthe |7
highest value of f)

Try to perform a reflection
through the barycenter of
the other points ;

keep the new point if the

value of fimproved

Did it become the

best point of the
simplex?

N

[s it still the
worse point
of the simplex?

v

-
/
/
[ 4
/
/
/
/
/
/
/
/

Try to perform a contraction
towards the barycenter of the
other points of the original simplex.

Try to perform a dilation
in the same direction ;
keep the new point if the
value of fimproved.

~s

No improvement?

Improvement?

A\ 4

Keep the new point

Exact algorithm with code: Press et al., “Numerical Recipes”
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Try to perform a contraction
towards the best point of the
simplex

~

/
[ S ——

+ Reiterate until convergence

25



"[s How to use the Nelder-Mead simplex in Python

‘from scipy.optimize import fmin

Scipy.org m SciPy v1.2.3 Reference Guide

Optimization and Root Finding (scipy.optimize )

scipy.optimize.fmin

scipy.optimize.fmin(func, x0, args=(), xtol=0.0001, ftol=0.0001, maxiter=None, maxfun=None, full_output=0, disp=1,
retall=0, callback=None, initial_simplex=None) [source]

Minimize a function using thg downhill simplex algorithm.

This algorithm only uses function values, not derivatives or second derivatives.

Parameters: func : callable func(x,*args)

The objective function to be minimized.

x0 : ndarray
Initial guess.

26



Iﬂ'ls Nelder-Mead simplex: example
A4 b

Online optimization at the FLASH FEL (DESY):

Maximized FEL radiation (“sase” curve) with Nelder-Mead algorithm
by tuning two groups of beam optics elements (“Action 1” and ”Action 2”)

50 ‘
— a5
45 > N\
RF St Soft X-ray e — - ey
ations Accelerating Structures SFLASH Undulators Photon 40
FLASH1 THz Diagnostics LI
'''''''''''''''''''''''''''''''''''''''''''' n R 1—
RFGun B o 4 — 35 ; W
e unch Compressors NN Gy e = Action2 || [T} |
SMeV 150MeV 450 MeV 1250 MeV > 30k W Il
Beam Dump ‘
FEL Experiments Actionl v
315m 25 L st ,
20 || = Vaeswaren
— V3DBC3 — H12SMATCH
1A tal 15 — H3DBC3 —— V7SMATCH
’; gapov 8 ail., ' ) 30'5%3'\:1%3\:?)%’57;}%’57«"6%’53‘}%’53.‘6%’5N‘,L%
Automatic tuning of Free Electron Lasers” (2017) N S My Wty SR SRS KR

https://arxiv.org/abs/1704.02335
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https://arxiv.org/abs/1704.02335

Ia'“ Nelder-Mead simplex: practical considerations
W44 A

* Relatively robust

* Extensively used for online tuning of accelerators
Often considered as a baseline method in literature on optimization

* However, requires many evaluations of f compared to other methods
* Not very robust to noise

®* No parallel evaluation (the algorithm is intrinsically sequential)

28
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Ih"’s Gradient-descent: algorithm
CLVAY

® (Calculate the local gradient of f

®* Move in the opposite direction
(i.e. towards the minimum)

Tni1 = T, —aV f(x,)
a: “step size” (optimization)

®* |terate

Note: Gradient-descent is also very common in the context of machine learning.
In this case: fis the “loss function” (accuracy of the ML model), a is the “learning rate”.
(See Wednesday’s lecture)

30



Lnt+l = Ln — Osz(iBn)

Trade-off:
If a is too small: converges slowly (inefficient)

If a is too large: may not converge

Common methods to choose a:
Fixed, small value (e.g. ¢ = 10™?)

Adaptive: e.g. Adagrad, RMSProp algorithms
(often used in ML context: see next week’s lecture)




I“J"q Gradient-descent: how to choose the step size
A4 b

Step size too large:

Lnt+l = Ln — Osz(iUn)

Trade-off:

If a is too small: converges slowly (inefficient)

If a is too large: may not converge

Common methods to choose a:
Fixed, small value (e.g. ¢ = 10™?)

Adaptive: e.g. Adagrad, RMSProp algorithms
(often used in ML context: see next week’s lecture)



Ial ) Gradient-descent: how to calculate the gradient
QLY

Analytical calculation:
Never possible if f is obtained from real-time measurements

Sometimes possible when f is obtained from numerical simulations
(some programming frameworks can automatically track the derivatives of every
single mathematical operation in the simulation, e.g. autograd)

Often possible when fis the loss function of an ML model

Numerical differentiation:
of -~ f(xi+h)— f(x;)

with h small

for each input parameter x;

Requires many (expensive) evaluations of f

Sensitive to any noisein f



Ia'“ Numerical differentiation: sensitivity to noise
QLY

Assume evaluations of f are noisy:

Noiseless part:
always gives the same
result, for a given x

Numerical differentiation:

f(xi +h) = f(x;)  f(x;+h) n —n

f(z) +<

Stochastic part:
value changes for
each evaluation,
with RMS a;,

Stochastic term,
V20,

with RMS -

For small h, numerical
differentiation amplifies
the noise.



Iﬂ" ) Gradient descent: the “valley problem”
QrVAY

If the objective function f presents a long narrow valley,
gradient-descent converges very slowly.

/7
/// /
@ Starting Point -/
/ /. v
S

f
'

/ TR 7 g
g /
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Source: https://distill.pub/2017/momentum/



https://distill.pub/2017/momentum/

Ial ] One possible solution: gradient descent with momentum
LA

Gradient descent: Gradient descent with momentum:
LTntl = Ty T AVpy

0<B8<1

* For f = 0: gradient descent with momentum reduces to regular gradient descent
* But for f§ close to 1, v,, effectively accumulates —V f over past iterations

 Similar to a point moving under a force —Vf,
with a friction coefficient proportional to (1 — )



Iﬂl ) The “valley problem”
CLVAY

V4
— /7 A
() Starting Point 7/
~ /" / Vi

/_

/ // /

No momentum: . A

(ﬁ — O ) / ///// // /'// //‘ ////'/ opumum
/ & / / /"’

!/ /
/ / / //// A
g [ 7~ JLE
// /
// / B

7 Solution

Starting Point

With momentum:
( = 0.85)

Optimum

Source: https://distill.pub/2017/momentum/



https://distill.pub/2017/momentum/

Ial ] Gradient descent: practical considerations
LA

®* Requires to carefully choose the step size ; issues with narrow valleys.
(unless one uses gradient descent with momentum)

®* Requires a reliable way to evaluate gradient (e.g. analytically)

* Relatively rarely used for optimization of particle accelerators,
at least for the standard version of gradient descent

* Widely used within machine learning algorithm to optimize the loss function

®* No parallel evaluation (the algorithm is intrinsically sequential)

38
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m’"s] Extremum seeking: introduction
A4 B

In simplex and gradient descent

(with finite-difference derivative)

the direction in which to move is
inferred by sampling neighboring points.

In extremum seeking, neighboring points
are sampled by performing small
oscillations.

The aim here is not to be efficient, but
rather to be robust for real-time dynamic
systems (e.g. operating accelerators, in
real-time, with drifts)




I“’n'} Extremum seeking: algorithm
=AA b

At each step, the coordinates of the point are updated with:

Tintl = Tjpn T At/ o, Cos(wmAt -+ kf((l?n))

w;: real-time frequency of the oscillations
(needs to be different for each coordinate
for the method to work)

At: real-time interval between evaluations
a: controls the amplitude of the oscillations

k: controls in which direction the average
motion goes.




Is‘. } Extremum seeking: why does it work?
A4 b

The algorithm does not explicitly calculate the gradient (like gradient descent) or
explicitly compare points (like simplex): how does it work?

Tint+1 = Tjpn + Aty/aw; cos(wnAt + kf(x,))

of

at
If the point is at a phase where it is already moving towards a minimum, then —f<O,

ot
and the point will spend more time at this phase.
(similarities with VB drift for a charged particle gyrating in a non-uniform B field)

Note that the effective frequency of the oscillation is: w; + k

Mathematically, it can be showed that the average motion satisfies

d{x)  ka
a9 Vf({(z))




w;: needs to be fast compared to the drifting
motion (again, needs to be different for each i)

At: needs to be small compared to w;

«: can be reduced as we get close to the
minimum, in order to reduce the amplitude of
the oscillation motion.




Ia‘n Extremum seeking: example at the AWAKE electron beam line
\=AA A

Aim: maintain beam on a target trajectory
Objective function (f): distance of beam centroid to the target trajectory, as measured by BPMs
Tuning parameters (Xx): strength of 10 different steering magnets

BPM n T 15
; g
I\ -—> data pickup — target £
B\ < feedback 4, —— measurement g 10
(]
S , € 05
S ' 2
£ / ! i | i I f ‘A f 2 00
=7 % /1 h | | : I | =
7~ 4 | i i ! E ‘ ©-0.5
i 27 ! i i : I i ‘%
II !1 l‘ ] i ! < '1 .0
7 1
6 -
| ..
JIEE: E 2
LI E > 7 §, 4 - o
R/ @y, ";\E a N
E 3 00..
35 21 ‘ee
e,
14 % %%,
__________ 0 - .“o' .o’oo.o'o‘”o.o”..’.

electron - proton

: 0 10 20 30 40 50 60
overlap region

optimization step
Scheinker et al., “Online Multi-Objective Particle Accelerator Optimization
of the AWAKE Electron Beam Line for Simultaneous Emittance and Orbit Control” (2020)

https://arxiv.org/abs/2003.11155v1
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Iﬂ" ] Optimization with constraints
LA

Constraints directly on the input parameters:

e.g. minimize emittance by tuning steering
magnets while ensuring that the current
that controls steering magnet stays within
a safe range.

Typical form: minimize f (x) while ensuring
X;i < Xmgforagiveniand x4,

Easy to implement: simply restrict the
domain () over which the optimization
is performed.

Constraints that depend on the input
parameters, but are difficult to predict
and need to be measured/simulated:

e.g. minimize energy spread by tuning
beam optics, while ensuring that the

beam loss stays below a given threshold

Typical form: minimize f (x) while
ensuring g(x) < Gmax

More difficult to implement: need a to
learng a model that can predict g and ensure
that the optimization algorithm will not
access unsafe parameters



Is‘. ) Derivative-based vs. derivative-free optimization algorithm
QLY E

Derivative-based algorithm Derivative-free algorithm

The algorithm requires a way to evaluate The algorithm does not need to evaluate
the derivative of f. the derivative (only evaluates f itself).
Examples:
Examples:

e Nelder-Mead

* G@Gradient-descent :
* Extremum Seeking




Is‘. ) Parallelizable vs. sequential optimization algorithm
QLY E

The point at which f is evaluated depends
on the results of all past evaluations.
Evaluations of f have to be carried out
sequentially.

Examples:
 Nelder-Mead

* Gradient-descent

e (Extremum Seeking)

Sequential algorithm Parallelizable algorithm

Evaluations of f are (at least partially)
independent and can be carried out in
parallel.

Examples:
e Random search
e Grid search

Important for simulation-based design studies:

Parallel optimization algorithms allow independent simulations to
be carried out on separate computational resources.




Isl] Local vs. global optimization algorithm
QLY

Local algorithm Global algorithm

Is likely to get “stuck” in local Attempts to find the global
minima. minimum, even in the presence of
local minima.
Examples:
* Nelder-Mead Examples:
* Gradient-descent * Random search

* Extremum Seeking * Grid search




Is‘. ) Single-objective vs. Multi-objective optimization
QLY

Multi-objective

Single-objective

Finds the minimum of a single scalar
function.

Examples:

* Nelder-Mead

* Gradient-descent
 Extremum Seeking

Simultaneously optimize several
(potentially conflicting) functions ;
find the optimal trade-off

See tomorrow’s lecture




Thanks for your attention.

Feel free to ask questions!



