
Optimization: introduction
and common methods

1

Presenter: R. Lehe
Day 1

Outline

• Example and motivation for particle accelerators

• Optimization: general definition and naïve algorithms

• Some common optimization algorithms
• Nelder-Mead algorithm
• Gradient-descent
• Extremum Seeking

• Some general terms

Outline

• Example and motivation for particle accelerators

• Optimization: general definition and naïve algorithms

• Some common optimization algorithms
• Nelder-Mead algorithm
• Gradient-descent
• Extremum Seeking

• Some general terms

Example: Free-Electron lasers (e.g. European XFEL, LCLS II)

Example of objective:
Maximize amount of X-ray
photons, during operation

Example of tuning parameters:
• Strength of steerer magnets
• Strength of FODO quadrupoles
• RF parameters (phase and

accelerating gradient)
Source: https://lcls.slac.stanford.edu/lcls-ii

Example: storage ring (e.g. ALS, SPEAR3)

5

Example of objective:
Maximize injection efficiency

Example of tuning parameters:
Strength of sextupole magnets

Source: https://journals.aps.org/prab/pdf/10.1103/PhysRevSTAB.18.084001

Example: electron injector for LCLS-II

6

Example of objective:
Minimize bunch length and
emittance, at the end of the
injector

Example of tuning parameters:
• Duration and transverse size of laser pulse
• Magnetic field in solenoids
• Buncher field
• Accelerating gradient in RF cavities

Source: https://accelconf.web.cern.ch/IPAC2014/papers/wepro015.pdf

Optimization for particle accelerators: motivation

7

Design study, before building hardware:
• Aim: choose best nominal parameters, predict optimal performance
• Mainly based on numerical simulations
• Some unique features: evaluation in parallel

Online tuning of existing hardware:
• Aim: get optimal performance during operation ; maintain despite drifts
• Mainly based on real-time measurements
• Some unique features: noise, hysteresis (e.g. magnetic elements), drifts (e.g.

temperature)

Outline

• Example and motivation for particle accelerators

• Optimization: general definition and naïve algorithms

• Some common optimization algorithms
• Nelder-Mead algorithm
• Gradient-descent
• Extremum Seeking

• Some general terms

Optimization: general definition and notation

9

Definition (minimization)

x: vector of input parameters (“knobs”, “tuning parameters”)
f: function to minimize (“objective function”)
Ω: domain (limited by constraints on accelerator parameters)

Example: injector
Minimizing emittance by tuning solenoids and accelerating cavities

Find xmin, such that ∀𝒙 ∈ 𝛺, 𝑓 𝒙!"# ≤ 𝑓(𝒙)

f = ✏?

xmin

f

x =

✓
Bsolenoid

Ecavity

◆

Efficient optimization

10

Aim:

Motivation: evaluations of f are usually costly

• Design studies:
Evaluations of f require computationally
expensive numerical simulations

• Online tuning:
Evaluations of f take time on the machine
Parameters of the machine may drift if it
takes too long to find the minimum.

Find xmin with few evaluations of f

xmin

f

Minimization vs maximization

Minimization:

Find xmin, such that ∀𝒙 ∈ 𝛺, 𝑓 𝒙!"# ≤ 𝑓(𝒙)
Maximization:

Find xmin, such that ∀𝒙 ∈ 𝛺, 𝑓 𝒙!"# ≥ 𝑓(𝒙)

In order to maximize a function f, one can simply pass the function –f
to a minimization algorithm.

In the rest of this course, we will focus on minimization algorithms.

Naive algorithm: grid search

12

Algorithm:
Systematically evaluate f at points
separated by a fixed step in each direction.
At the end: find the best point among
them.

Practical consideration:

• Takes a long time to even reach
interesting regions.

• Scales badly with dimensionality!

• Does not use the information from
previous evaluations of f to decide
which point to evaluate next.

Naive algorithm: random search

13

Algorithm:
Evaluate f at randomly chosen points.
At the end: find the best point among them.

Practical consideration:

• May evaluate points that are close to
each other and do not bring significantly
more information

• Scales badly with dimensionality!

• Does not use the information from
previous evaluations of f to decide which
point to evaluate next.

Human intervention

Algorithm:
A human being chooses the points to evaluate

Practically consideration

• Humans sometimes accumulate unique
experience/knowledge of a given accelerator

• But: slow reaction time

• Biases, bad at dealing with more than 1 or 2 dimensions
(usually perform 1D search)

14

Outline

• Example and motivation for particle accelerators

• Optimization: general definition and naïve algorithms

• Some common optimization algorithms
• Nelder-Mead algorithm
• Gradient-descent
• Extremum Seeking

• Some general terms

Nelder-Mead simplex: algorithm

16

• Choose N+1 arbitrary initial points
(where N is the dimension of the
input x of the objective function f)
Evaluate f at these points.

Note:
These points define a “simplex”.
(The points are the “vertices” of the simplex.)

- In 2D (N=2), a simplex is a triangle.
- In 3D (N=3), a simplex is a terahedron.

2D example: 3 initial points

Nelder-Mead simplex: algorithm

17

• Choose N+1 arbitrary initial points
(where N is the dimension of the
input x of the objective function f)
Evaluate f at these points.

• Iteratively:
- Move vertices according to a

set of basic rules (see next slide)
- Evaluate objective function f
at the new vertices

• These rules effectively result in the simplex moving towards the minimum.
The N+1 vertices allow to “feel” the direction in which to move
(without calculating the gradient).

Nelder-Mead simplex: basic rules

18

Pick	the	worse point
(i.e.	the	one	with	the	
highest	value	of	f)

Exact	algorithm	with	code:	Press	et	al.,	“Numerical	Recipes”

Nelder-Mead simplex: basic rules

19

Pick	the	worst point
(i.e.	the	one	with	the	
highest	value	of	f)

Try	to	perform	a	reflection
through	the	barycenter	of	
the	other	points	;	
keep	the	new	point	if	the	
value	of	f	improved

Heuristic: try	to	move	away
from	the	high	values	of	f

Exact	algorithm	with	code:	Press	et	al.,	“Numerical	Recipes”

Nelder-Mead simplex: basic rules

20

Pick	the	worst point
(i.e.	the	one	with	the	
highest	value	of	f)

Try	to	perform	a	reflection
through	the	barycenter	of	
the	other	points	;
keep	the	new	point	if	the	
value	of	f	improved

Did	it	become	the
best	point	of	the	
simplex?

Try	to	perform	a	dilation
in	the	same	direction	;	
keep	the	new	point	if	the	
value	of	f improved.	

Heuristic: accelerate in	the
the	direction	in	which	f	decreases

Exact	algorithm	with	code:	Press	et	al.,	“Numerical	Recipes”

Nelder-Mead simplex: basic rules

Simplex accelerating
in the direction of decreasing f:

Nelder-Mead simplex: basic rules

22

Pick	the	worst point
(i.e.	the	one	with	the	
highest	value	of	f)

Try	to	perform	a	reflection
through	the	barycenter	of	
the	other	points	;
keep	the	new	point	if	the	
value	of	f	improved

Try	to	perform	a	contraction
towards	the	barycenter	of	the
other	points	of	the	original	simplex.

Is	it	still	the	
worse	point	
of	the	simplex?

Did	it	become	the
best	point	of	the	
simplex?

Try	to	perform	a	dilation
in	the	same	direction	;	
keep	the	new	point	if	the	
value	of	f improved.	

Heuristic: squeeze	into
narrow	valleys	of	f

Exact	algorithm	with	code:	Press	et	al.,	“Numerical	Recipes”

Nelder-Mead simplex: basic rules

Squeeze into narrow valleys of f

Nelder-Mead simplex: basic rules

24

Pick	the	worst point
(i.e.	the	one	with	the	
highest	value	of	f)

Try	to	perform	a	reflection
through	the	barycenter	of	
the	other	points	;
keep	the	new	point	if	the	
value	of	f	improved

Exact	algorithm	with	code:	Press	et	al.,	“Numerical	Recipes”

Try	to	perform	a	contraction
towards	the	barycenter	of	the
other	points	of	the	original	simplex.

Is	it	still	the	
worse	point	
of	the	simplex?

Did	it	become	the
best	point	of	the	
simplex?

Try	to	perform	a	dilation
in	the	same	direction	;	
keep	the	new	point	if	the	
value	of	f improved.	

Improvement?

Keep	the	new	point

No	improvement?

Try	to	perform	a	contraction
towards	the	best	point	of	the	
simplex

Heuristic: shrink	
into	a	trough	of	f

Nelder-Mead simplex: basic rules

25

Pick	the	worst point
(i.e.	the	one	with	the	
highest	value	of	f)

Try	to	perform	a	reflection
through	the	barycenter	of	
the	other	points	;
keep	the	new	point	if	the	
value	of	f	improved

Exact	algorithm	with	code:	Press	et	al.,	“Numerical	Recipes”

Try	to	perform	a	contraction
towards	the	barycenter	of	the
other	points	of	the	original	simplex.

Is	it	still	the	
worse	point	
of	the	simplex?

Did	it	become	the
best	point	of	the	
simplex?

Try	to	perform	a	dilation
in	the	same	direction	;	
keep	the	new	point	if	the	
value	of	f improved.	

Improvement?

Keep	the	new	point

No	improvement?

Try	to	perform	a	contraction
towards	the	best	point	of	the	
simplex

+	Reiterate	until	convergence

How to use the Nelder-Mead simplex in Python

26

from scipy.optimize import fmin

Nelder-Mead simplex: example

27

I.	Agapov et	al.,	
“Automatic	tuning	of	Free	Electron	Lasers”	(2017)
https://arxiv.org/abs/1704.02335

Online optimization at the FLASH FEL (DESY):
Maximized FEL radiation (“sase” curve) with Nelder-Mead algorithm
by tuning two groups of beam optics elements (“Action 1” and ”Action 2”)

https://arxiv.org/abs/1704.02335

Nelder-Mead simplex: practical considerations

• Relatively robust

• Extensively used for online tuning of accelerators
Often considered as a baseline method in literature on optimization

• However, requires many evaluations of f compared to other methods

• Not very robust to noise

• No parallel evaluation (the algorithm is intrinsically sequential)

28

Outline

• Example and motivation for particle accelerators

• Optimization: general definition and naïve algorithms

• Some common optimization algorithms
• Nelder-Mead algorithm
• Gradient-descent
• Extremum Seeking

• Some general terms

Gradient-descent: algorithm

30

• Calculate the local gradient of f

• Move in the opposite direction
(i.e. towards the minimum)

𝛼: “step size” (optimization)

• Iterate

Note: Gradient-descent is also very common in the context of machine learning.
In this case: f is the “loss function” (accuracy of the ML model), 𝛼 is the “learning rate”.
(See Wednesday’s lecture)

xn+1 = xn � ↵rf(xn)

Gradient-descent: how to choose the step size 𝛼

Trade-off:
• If 𝛼 is too small: converges slowly (inefficient)
• If 𝛼 is too large: may not converge

Common methods to choose 𝜶:
• Fixed, small value (e.g. 𝛼 = 10!")
• Adaptive: e.g. Adagrad, RMSProp algorithms

(often used in ML context: see next week’s lecture)

Step size too small:xn+1 = xn � ↵rf(xn)

Gradient-descent: how to choose the step size 𝛼

Trade-off:
• If 𝛼 is too small: converges slowly (inefficient)
• If 𝛼 is too large: may not converge

Common methods to choose 𝜶:
• Fixed, small value (e.g. 𝛼 = 10!")
• Adaptive: e.g. Adagrad, RMSProp algorithms

(often used in ML context: see next week’s lecture)

Step size too large:
xn+1 = xn � ↵rf(xn)

Gradient-descent: how to calculate the gradient

Analytical calculation:
• Never possible if f is obtained from real-time measurements
• Sometimes possible when f is obtained from numerical simulations

(some programming frameworks can automatically track the derivatives of every
single mathematical operation in the simulation, e.g. autograd)

• Often possible when f is the loss function of an ML model

Numerical differentiation:

with h small
• Requires many (expensive) evaluations of f
• Sensitive to any noise in f

for each input parameter 𝑥!
@f

@xi
⇡ f(xi + h)� f(xi)

h

Numerical differentiation: sensitivity to noise

Assume evaluations of f are noisy: f(x) = f̃(x) + ⌘

Noiseless part:
always gives the same
result, for a given x

Stochastic part:
value changes for
each evaluation,
with RMS 𝜎#

Numerical differentiation:

f(xi + h)� f(xi)

h
=

f̃(xi + h)� f̃(xi)

h
+

✓
⌘0 � ⌘

h

◆

⇡ @f̃

@xi
+

✓
⌘0 � ⌘

h

◆

Stochastic term,

with RMS
"$!
%

For small h, numerical
differentiation amplifies
the noise.

Gradient descent: the “valley problem”

Source: https://distill.pub/2017/momentum/

If the objective function f presents a long narrow valley,
gradient-descent converges very slowly.

https://distill.pub/2017/momentum/

One possible solution: gradient descent with momentum

Gradient descent:

xn+1 = xn � ↵rf(xn) vn+1 = �vn �rf(xn)

xn+1 = xn + ↵vn+1

Gradient descent with momentum:

• For 𝛽 = 0: gradient descent with momentum reduces to regular gradient descent

• But for 𝛽 close to 1, 𝒗& effectively accumulates −𝜵𝑓 over past iterations

• Similar to a point moving under a force −𝜵𝑓,
with a friction coefficient proportional to (1 − 𝛽)

0  � < 1

The “valley problem”

Source: https://distill.pub/2017/momentum/

No momentum:
(𝛽 = 0)

With momentum:
(𝛽 = 0.85)

https://distill.pub/2017/momentum/

Gradient descent: practical considerations

• Requires to carefully choose the step size ; issues with narrow valleys.
(unless one uses gradient descent with momentum)

• Requires a reliable way to evaluate gradient (e.g. analytically)

• Relatively rarely used for optimization of particle accelerators,
at least for the standard version of gradient descent

• Widely used within machine learning algorithm to optimize the loss function

• No parallel evaluation (the algorithm is intrinsically sequential)

38

Outline

• Example and motivation for particle accelerators

• Optimization: general definition and naïve algorithms

• Some common optimization algorithms
• Nelder-Mead algorithm
• Gradient-descent
• Extremum Seeking

• Some general terms

Extremum seeking: introduction

• In simplex and gradient descent
(with finite-difference derivative)
the direction in which to move is
inferred by sampling neighboring points.

• In extremum seeking, neighboring points
are sampled by performing small
oscillations.

• The aim here is not to be efficient, but
rather to be robust for real-time dynamic
systems (e.g. operating accelerators, in
real-time, with drifts)

Extremum seeking: algorithm

At each step, the coordinates of the point are updated with:

xi,n+1 = xi,n +�t
p
↵!i cos(!in�t+ kf(xn))

• 𝜔': real-time frequency of the oscillations
(needs to be different for each coordinate
for the method to work)

• ∆𝑡: real-time interval between evaluations

• 𝛼: controls the amplitude of the oscillations

• 𝑘: controls in which direction the average
motion goes.

Extremum seeking: why does it work?

• The algorithm does not explicitly calculate the gradient (like gradient descent) or
explicitly compare points (like simplex): how does it work?

• Note that the effective frequency of the oscillation is: 𝜔' + 𝑘
()
(*

If the point is at a phase where it is already moving towards a minimum, then ()(*<0,
and the point will spend more time at this phase.
(similarities with ∇𝐵 drift for a charged particle gyrating in a non-uniform B field)

• Mathematically, it can be showed that the average motion satisfies

xi,n+1 = xi,n +�t
p
↵!i cos(!in�t+ kf(xn))

dhxi
dt

= �k↵

2
rf(hxi)

Extremum seeking: choosing parameters

xi,n+1 = xi,n +�t
p
↵!i cos(!in�t+ kf(xn))

• 𝜔': needs to be fast compared to the drifting
motion (again, needs to be different for each i)

• ∆𝑡: needs to be small compared to 𝜔'

• 𝛼: can be reduced as we get close to the
minimum, in order to reduce the amplitude of
the oscillation motion.

dhxi
dt

= �k↵

2
rf(hxi)

Extremum seeking: example at the AWAKE electron beam line

Scheinker et al., “Online Multi-Objective Particle Accelerator Optimization
of the AWAKE Electron Beam Line for Simultaneous Emittance and Orbit Control” (2020)
https://arxiv.org/abs/2003.11155v1

Aim: maintain beam on a target trajectory
Objective function (f): distance of beam centroid to the target trajectory, as measured by BPMs
Tuning parameters (x): strength of 10 different steering magnets

https://arxiv.org/abs/2003.11155v1

Outline

• Example and motivation for particle accelerators

• Optimization: general definition and naïve algorithms

• Some common optimization algorithms
• Nelder-Mead algorithm
• Gradient-descent
• Extremum Seeking

• Some general terms

Optimization with constraints

Constraints directly on the input parameters:

e.g. minimize emittance by tuning steering
magnets while ensuring that the current
that controls steering magnet stays within
a safe range.

Typical form: minimize 𝑓(𝒙) while ensuring
𝑥' ≤ 𝑥+,-for a given 𝑖 and 𝑥+,-

Easy to implement: simply restrict the
domain Ω over which the optimization
is performed.

Constraints that depend on the input
parameters, but are difficult to predict
and need to be measured/simulated:

e.g. minimize energy spread by tuning
beam optics, while ensuring that the
beam loss stays below a given threshold

Typical form: minimize 𝑓(𝒙) while
ensuring 𝑔 𝒙 ≤ 𝑔+,-

More difficult to implement: need a to
learng a model that can predict 𝑔 and ensure
that the optimization algorithm will not
access unsafe parameters

Derivative-based vs. derivative-free optimization algorithm

Derivative-based algorithm

The algorithm requires a way to evaluate
the derivative of f.

Derivative-free algorithm

The algorithm does not need to evaluate
the derivative (only evaluates f itself).

Examples:
• Gradient-descent

Examples:
• Nelder-Mead
• Extremum Seeking

Parallelizable vs. sequential optimization algorithm

Parallelizable algorithm

Evaluations of f are (at least partially)
independent and can be carried out in
parallel.

Sequential algorithm

The point at which f is evaluated depends
on the results of all past evaluations.
Evaluations of f have to be carried out
sequentially.

Examples:
• Nelder-Mead
• Gradient-descent
• (Extremum Seeking)

Examples:
• Random search
• Grid search

Important for simulation-based design studies:
Parallel optimization algorithms allow independent simulations to
be carried out on separate computational resources.

Local vs. global optimization algorithm

Global algorithm

Attempts to find the global
minimum, even in the presence of
local minima.

Local algorithm

Is likely to get “stuck” in local
minima.

Examples:
• Nelder-Mead
• Gradient-descent
• Extremum Seeking

Examples:
• Random search
• Grid search

Single-objective vs. Multi-objective optimization

Single-objective

Finds the minimum of a single scalar
function.

Multi-objective

Simultaneously optimize several
(potentially conflicting) functions ;
find the optimal trade-off

Examples:
• Nelder-Mead
• Gradient-descent
• Extremum Seeking

See tomorrow’s lecture

Thanks for your attention.

Feel free to ask questions!

