

Optimization: introduction and common methods

Presenter: R. Lehe

Day 1

Outline

- Example and motivation for particle accelerators
- Optimization: general definition and naïve algorithms
- Some common optimization algorithms
 - Nelder-Mead algorithm
 - Gradient-descent
 - Extremum Seeking
- Some general terms

Outline

- Example and motivation for particle accelerators
- Optimization: general definition and naïve algorithms
- Some common optimization algorithms
 - Nelder-Mead algorithm
 - Gradient-descent
 - Extremum Seeking
- Some general terms

Example: Free-Electron lasers (e.g. European XFEL, LCLS II)

Example of objective:

Maximize amount of X-ray photons, during operation

Example of tuning parameters:

- Strength of steerer magnets
- Strength of FODO quadrupoles
- RF parameters (phase and accelerating gradient)

Source: https://lcls.slac.stanford.edu/lcls-ii

Example: storage ring (e.g. ALS, SPEAR3)

Example of objective:

Maximize injection efficiency

Example of tuning parameters:

Strength of sextupole magnets

Example: electron injector for LCLS-II

Example of objective:

Minimize bunch length and emittance, at the end of the injector

Example of tuning parameters:

- Duration and transverse size of laser pulse
- Magnetic field in solenoids
- Buncher field
- Accelerating gradient in RF cavities

Optimization for particle accelerators: motivation

Design study, before building hardware:

- Aim: choose **best nominal parameters**, predict optimal performance
- Mainly based on numerical simulations
- Some unique features: evaluation in parallel

Online tuning of existing hardware:

- Aim: get optimal performance during operation; maintain despite drifts
- Mainly based on real-time measurements
- Some unique features: noise, hysteresis (e.g. magnetic elements), drifts (e.g. temperature)

Outline

- Example and motivation for particle accelerators
- Optimization: general definition and naïve algorithms
- Some common optimization algorithms
 - Nelder-Mead algorithm
 - Gradient-descent
 - Extremum Seeking
- Some general terms

Optimization: general definition and notation

Definition (minimization)

Find \mathbf{x}_{min} , such that $\forall \mathbf{x} \in \Omega$, $f(\mathbf{x}_{min}) \leq f(\mathbf{x})$

x: vector of input parameters ("knobs", "tuning parameters")

f: function to minimize ("objective function")

 Ω : domain (limited by constraints on accelerator parameters)

Example: injector

Minimizing emittance by tuning solenoids and accelerating cavities

$$f = \epsilon_{\perp}$$
 $m{x} = \left(egin{array}{c} B_{solenoid} \ E_{cavity} \end{array}
ight)$

Efficient optimization

Aim:

Find \mathbf{x}_{min} with **few** evaluations of f

Motivation: evaluations of f are usually costly

Design studies:

Evaluations of *f* require **computationally expensive** numerical simulations

Online tuning:

Evaluations of *f* take time on the machine Parameters of the machine may drift if it takes too long to find the minimum.

Minimization vs maximization

Minimization:

Find
$$\mathbf{x}_{min}$$
, such that $\forall \mathbf{x} \in \Omega$, $f(\mathbf{x}_{min}) \leq f(\mathbf{x})$

Maximization:

Find
$$\mathbf{x}_{min}$$
, such that $\forall \mathbf{x} \in \Omega$, $f(\mathbf{x}_{min}) \geq f(\mathbf{x})$

In order to **maximize** a function f, one can simply pass the function -f to a **minimization** algorithm.

In the rest of this course, we will focus on minimization algorithms.

Naive algorithm: grid search

Algorithm:

Systematically evaluate f at points separated by **a fixed step** in each direction. At the end: find the best point among them.

Practical consideration:

- Takes a long time to even reach interesting regions.
- Scales badly with dimensionality!
- Does not use the information from previous evaluations of f to decide which point to evaluate next.

Naive algorithm: random search

Algorithm:

Evaluate f at randomly chosen points.

At the end: find the best point among them.

Practical consideration:

- May evaluate points that are close to each other and do not bring significantly more information
- Scales badly with dimensionality!
- Does not use the information from previous evaluations of f to decide which point to evaluate next.

Human intervention

Algorithm:

A human being chooses the points to evaluate

Practically consideration

- Humans sometimes accumulate unique experience/knowledge of a given accelerator
- But: slow reaction time

 Biases, bad at dealing with more than 1 or 2 dimensions (usually perform 1D search)

Outline

- Example and motivation for particle accelerators
- Optimization: general definition and naïve algorithms
- Some common optimization algorithms
 - Nelder-Mead algorithm
 - Gradient-descent
 - Extremum Seeking
- Some general terms

Nelder-Mead simplex: algorithm

Choose N+1 arbitrary initial points
 (where N is the dimension of the input x of the objective function f)

 Evaluate f at these points.

Note:

These points define a "simplex". (The points are the "vertices" of the simplex.)

- In 2D (N=2), a simplex is a triangle.
- In 3D (N=3), a simplex is a terahedron.

2D example: 3 initial points

Nelder-Mead simplex: algorithm

Choose N+1 arbitrary initial points
 (where N is the dimension of the input x of the objective function f)

 Evaluate f at these points.

• Iteratively:

- Move vertices according to a set of basic rules (see next slide)
- Evaluate objective function f
 at the new vertices

• These rules effectively result in the simplex moving **towards the minimum**. The N+1 vertices allow to "feel" the direction in which to move (without calculating the gradient).

Pick the **worse** point (i.e. the one with the highest value of *f*)

Heuristic: try to move **away** from the high values of *f*

Simplex accelerating in the direction of decreasing *f*:

Squeeze into narrow valleys of *f*

Exact algorithm with code: Press et al., "Numerical Recipes"

into a trough of *f*

+ Reiterate until convergence

How to use the Nelder-Mead simplex in Python

from scipy.optimize import fmin

scipy.optimize.fmin

scipy.optimize.fmin(func, x0, args=(), xtol=0.0001, ftol=0.0001, maxiter=None, maxfun=None, full_output=0, disp=1, retall=0, callback=None, initial_simplex=None) [source]

Minimize a function using the downhill simplex algorithm.

This algorithm only uses function values, not derivatives or second derivatives.

Parameters: func : callable func(x,*args)

The objective function to be minimized.

x0: *ndarray*Initial guess.

Nelder-Mead simplex: example

Online optimization at the FLASH FEL (DESY):

Maximized FEL radiation ("sase" curve) with Nelder-Mead algorithm by tuning two groups of beam optics elements ("Action 1" and "Action 2")

I. Agapov et al., "Automatic tuning of Free Electron Lasers" (2017) https://arxiv.org/abs/1704.02335

Nelder-Mead simplex: practical considerations

- Relatively robust
- Extensively used for online tuning of accelerators
 Often considered as a baseline method in literature on optimization
- However, requires many evaluations of f compared to other methods
- Not very robust to noise
- No parallel evaluation (the algorithm is intrinsically sequential)

Outline

- Example and motivation for particle accelerators
- Optimization: general definition and naïve algorithms
- Some common optimization algorithms
 - Nelder-Mead algorithm
 - Gradient-descent
 - Extremum Seeking
- Some general terms

Gradient-descent: algorithm

- Calculate the **local gradient** of f
- Move in the opposite direction (i.e. towards the minimum)

$$\boldsymbol{x}_{n+1} = \boldsymbol{x}_n - \alpha \boldsymbol{\nabla} f(\boldsymbol{x}_n)$$

 α : "step size" (optimization)

Iterate

Note: Gradient-descent is also **very common** in the context of **machine learning**. In this case: f is the "loss function" (accuracy of the ML model), α is the "learning rate". (See Wednesday's lecture)

Gradient-descent: how to choose the step size α

$$\boldsymbol{x}_{n+1} = \boldsymbol{x}_n - \alpha \boldsymbol{\nabla} f(\boldsymbol{x}_n)$$

Trade-off:

- If α is too small: converges slowly (inefficient)
- If α is too large: may not converge

Common methods to choose α :

- Fixed, small value (e.g. $\alpha = 10^{-2}$)
- Adaptive: e.g. Adagrad, RMSProp algorithms (often used in ML context: see next week's lecture)

Step size too small:

Gradient-descent: how to choose the step size α

$$\boldsymbol{x}_{n+1} = \boldsymbol{x}_n - \alpha \boldsymbol{\nabla} f(\boldsymbol{x}_n)$$

Trade-off:

- If α is too small: converges slowly (inefficient)
- If α is too large: may not converge

Common methods to choose α :

- Fixed, small value (e.g. $\alpha = 10^{-2}$)
- Adaptive: e.g. Adagrad, RMSProp algorithms (often used in ML context: see next week's lecture)

Step size too large:

Gradient-descent: how to calculate the gradient

Analytical calculation:

- Never possible if f is obtained from real-time measurements
- Sometimes possible when f is obtained from **numerical simulations** (some programming frameworks can automatically track the derivatives of every single mathematical operation in the simulation, e.g. autograd)
- Often possible when f is the loss function of an ML model

Numerical differentiation:

$$\frac{\partial f}{\partial x_i} pprox rac{f(x_i + h) - f(x_i)}{h}$$
 for **each** input parameter x_i

with *h* small

- Requires many (expensive) evaluations of f
- Sensitive to any noise in f

Numerical differentiation: sensitivity to noise

Assume evaluations of f are **noisy**:

$$f(\boldsymbol{x}) = \tilde{f}(\boldsymbol{x}) + \eta$$

Noiseless part:

always gives the same result, for a given **x**

Stochastic part: value changes for each evaluation, with RMS σ_n

Numerical differentiation:

$$\frac{f(x_i + h) - f(x_i)}{h} = \frac{\tilde{f}(x_i + h) - \tilde{f}(x_i)}{h} + \left(\frac{\eta' - \eta}{h}\right)$$

$$\approx \frac{\partial \tilde{f}}{\partial x_i} + \left(\frac{\eta' - \eta}{h}\right)$$

Stochastic term, with RMS $\frac{\sqrt{2}\sigma_{\eta}}{h}$

For small *h*, numerical differentiation **amplifies** the noise.

Gradient descent: the "valley problem"

If the objective function f presents a **long narrow valley**, gradient-descent converges very slowly.

Source: https://distill.pub/2017/momentum/

One possible solution: gradient descent with momentum

Gradient descent:

$$\boldsymbol{x}_{n+1} = \boldsymbol{x}_n - \alpha \boldsymbol{\nabla} f(\boldsymbol{x}_n)$$

Gradient descent with momentum:

$$\mathbf{v}_{n+1} = \beta \mathbf{v}_n - \nabla f(\mathbf{x}_n)$$
 $\mathbf{x}_{n+1} = \mathbf{x}_n + \alpha \mathbf{v}_{n+1}$

$$0 < \beta < 1$$

- For $\beta = 0$: gradient descent with momentum reduces to regular gradient descent
- But for β close to 1, v_n effectively accumulates $-\nabla f$ over past iterations
- Similar to a point moving under a force $-\nabla f$, with a friction coefficient proportional to (1β)

The "valley problem"

No momentum:

$$(\beta = 0)$$

With momentum: $(\beta = 0.85)$

Source: https://distill.pub/2017/momentum/

Gradient descent: practical considerations

- Requires to carefully choose the step size; issues with narrow valleys.
 (unless one uses gradient descent with momentum)
- Requires a reliable way to evaluate gradient (e.g. analytically)
- Relatively rarely used for optimization of particle accelerators, at least for the standard version of gradient descent
- Widely used within machine learning algorithm to optimize the loss function
- No parallel evaluation (the algorithm is intrinsically sequential)

Outline

- Example and motivation for particle accelerators
- Optimization: general definition and naïve algorithms
- Some common optimization algorithms
 - Nelder-Mead algorithm
 - Gradient-descent
 - Extremum Seeking
- Some general terms

Extremum seeking: introduction

- In simplex and gradient descent
 (with finite-difference derivative)
 the direction in which to move is inferred by sampling neighboring points.
- In extremum seeking, neighboring points are sampled by performing small oscillations.
- The aim here is not to be efficient, but rather to be robust for real-time dynamic systems (e.g. operating accelerators, in real-time, with drifts)

Extremum seeking: algorithm

At each step, the coordinates of the point are updated with:

$$x_{i,n+1} = x_{i,n} + \Delta t \sqrt{\alpha \omega_i} \cos(\omega_i n \Delta t + k f(\boldsymbol{x}_n))$$

- ω_i : real-time frequency of the oscillations (needs to be different for each coordinate for the method to work)
- Δt : real-time interval between evaluations
- α : controls the amplitude of the oscillations
- k: controls in which direction the average motion goes.

Extremum seeking: why does it work?

 The algorithm does not explicitly calculate the gradient (like gradient descent) or explicitly compare points (like simplex): how does it work?

$$x_{i,n+1} = x_{i,n} + \Delta t \sqrt{\alpha \omega_i} \cos(\omega_i n \Delta t + k f(\boldsymbol{x}_n))$$

- Note that the effective frequency of the oscillation is: $\omega_i + k \frac{\partial f}{\partial t}$ If the point is at a phase where it is **already** moving towards a minimum, then $\frac{\partial f}{\partial t} < 0$, and the point will **spend more time at this phase**. (similarities with ∇B drift for a charged particle gyrating in a non-uniform B field)
- Mathematically, it can be showed that the average motion satisfies

$$\frac{d\langle \boldsymbol{x}\rangle}{dt} = -\frac{k\alpha}{2} \boldsymbol{\nabla} f(\langle \boldsymbol{x}\rangle)$$

Extremum seeking: choosing parameters

$$x_{i,n+1} = x_{i,n} + \Delta t \sqrt{\alpha \omega_i} \cos(\omega_i n \Delta t + k f(\boldsymbol{x}_n)) \qquad \frac{d\langle \boldsymbol{x} \rangle}{dt} = -\frac{k\alpha}{2} \nabla f(\langle \boldsymbol{x} \rangle)$$

- ω_i : needs to be fast compared to the drifting motion (again, needs to be different for each i)
- Δt : needs to be small compared to ω_i
- α : can be reduced as we get close to the minimum, in order to reduce the amplitude of the oscillation motion.

Extremum seeking: example at the AWAKE electron beam line

Aim: maintain beam on a target trajectory

Objective function (f): distance of beam centroid to the target trajectory, as measured by BPMs Tuning parameters (x): strength of 10 different steering magnets

Scheinker et al., "Online Multi-Objective Particle Accelerator Optimization of the AWAKE Electron Beam Line for Simultaneous Emittance and Orbit Control" (2020) https://arxiv.org/abs/2003.11155v1

Outline

- Example and motivation for particle accelerators
- Optimization: general definition and naïve algorithms
- Some common optimization algorithms
 - Nelder-Mead algorithm
 - Gradient-descent
 - Extremum Seeking
- Some general terms

Optimization with constraints

Constraints directly on the input parameters:

e.g. minimize emittance by tuning steering magnets while ensuring that the **current that controls steering magnet** stays within a safe range.

Typical form: minimize f(x) while ensuring $x_i \le x_{max}$ for a given i and x_{max}

Easy to implement: simply restrict the domain Ω over which the optimization is performed.

Constraints that depend on the input parameters, but are difficult to predict and need to be measured/simulated:

e.g. minimize energy spread by tuning beam optics, while ensuring that the **beam loss** stays below a given threshold

Typical form: minimize f(x) while ensuring $g(x) \le g_{max}$

More difficult to implement: need a to learng a model that can predict g and ensure that the optimization algorithm will not access unsafe parameters

Derivative-based vs. derivative-free optimization algorithm

Derivative-based algorithm

The algorithm requires a way to evaluate the derivative of *f*.

Examples:

Gradient-descent

Derivative-free algorithm

The algorithm does not need to evaluate the derivative (only evaluates *f* itself).

Examples:

- Nelder-Mead
- Extremum Seeking

Parallelizable vs. sequential optimization algorithm

Sequential algorithm

The point at which f is evaluated **depends** on the results of **all past evaluations**. Evaluations of f have to be carried out **sequentially**.

Examples:

- Nelder-Mead
- Gradient-descent
- (Extremum Seeking)

Parallelizable algorithm

Evaluations of *f* are (at least partially) **independent** and can be **carried out in parallel.**

Examples:

- Random search
- Grid search

Important for simulation-based design studies:

Parallel optimization algorithms allow independent simulations to be carried out on separate computational resources.

Local vs. global optimization algorithm

Local algorithm

Is likely to get "stuck" in **local** minima.

Examples:

- Nelder-Mead
- Gradient-descent
- Extremum Seeking

Global algorithm

Attempts to find the global minimum, even in the presence of local minima.

Examples:

- Random search
- Grid search

Single-objective vs. Multi-objective optimization

Single-objective

Finds the minimum of a single **scalar** function.

Examples:

- Nelder-Mead
- Gradient-descent
- Extremum Seeking

Multi-objective

Simultaneously optimize **several** (potentially conflicting) functions; find the optimal **trade-off**

See tomorrow's lecture

Thanks for your attention.

Feel free to ask questions!