







# Optimization: introduction and common methods

Presenter: R. Lehe

Day 1

# Outline

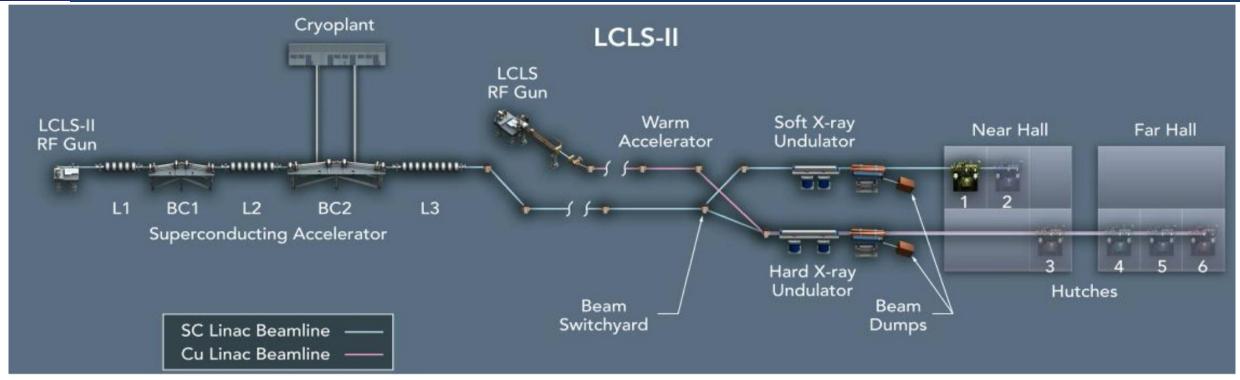
- Example and motivation for particle accelerators
- Optimization: general definition and naïve algorithms
- Some common optimization algorithms
  - Nelder-Mead algorithm
  - Gradient-descent
  - Extremum Seeking
- Some general terms

# **Outline**

- Example and motivation for particle accelerators
- Optimization: general definition and naïve algorithms
- Some common optimization algorithms
  - Nelder-Mead algorithm
  - Gradient-descent
  - Extremum Seeking
- Some general terms



## Example: Free-Electron lasers (e.g. European XFEL, LCLS II)



#### **Example of objective:**

Maximize amount of X-ray photons, during operation

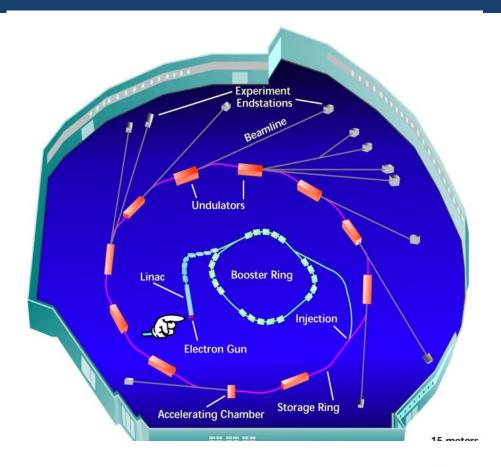
#### **Example of tuning parameters:**

- Strength of steerer magnets
- Strength of FODO quadrupoles
- RF parameters (phase and accelerating gradient)

Source: https://lcls.slac.stanford.edu/lcls-ii



# Example: storage ring (e.g. ALS, SPEAR3)



### **Example of objective:**

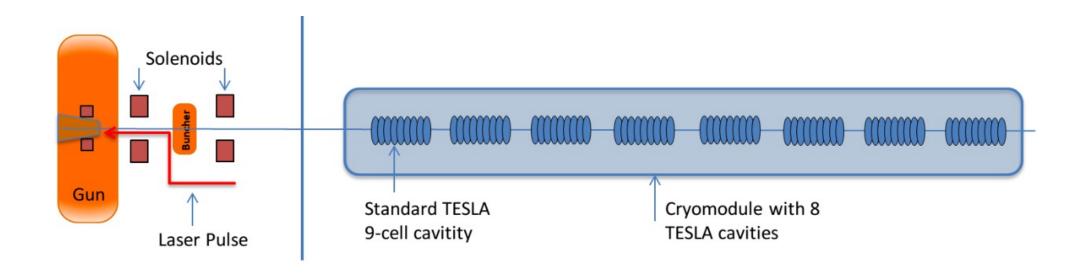
Maximize injection efficiency

## **Example of tuning parameters:**

Strength of sextupole magnets



# Example: electron injector for LCLS-II



#### **Example of objective:**

Minimize bunch length and emittance, at the end of the injector

### **Example of tuning parameters:**

- Duration and transverse size of laser pulse
- Magnetic field in solenoids
- Buncher field
- Accelerating gradient in RF cavities



## Optimization for particle accelerators: motivation

#### Design study, before building hardware:

- Aim: choose **best nominal parameters**, predict optimal performance
- Mainly based on numerical simulations
- Some unique features: evaluation in parallel

#### Online tuning of existing hardware:

- Aim: get optimal performance during operation; maintain despite drifts
- Mainly based on real-time measurements
- Some unique features: noise, hysteresis (e.g. magnetic elements), drifts (e.g. temperature)

# **Outline**

- Example and motivation for particle accelerators
- Optimization: general definition and naïve algorithms
- Some common optimization algorithms
  - Nelder-Mead algorithm
  - Gradient-descent
  - Extremum Seeking
- Some general terms



# Optimization: general definition and notation

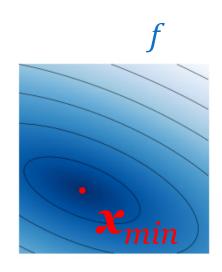
#### **Definition (minimization)**

# Find $\mathbf{x}_{min}$ , such that $\forall \mathbf{x} \in \Omega$ , $f(\mathbf{x}_{min}) \leq f(\mathbf{x})$

x: vector of input parameters ("knobs", "tuning parameters")

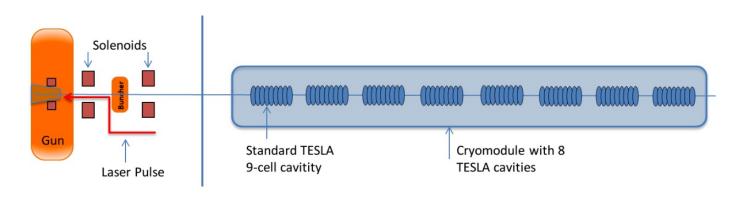
*f*: function to minimize ("objective function")

 $\Omega$ : domain (limited by constraints on accelerator parameters)



#### **Example: injector**

Minimizing emittance by tuning solenoids and accelerating cavities



$$f = \epsilon_{\perp}$$
  $m{x} = \left(egin{array}{c} B_{solenoid} \ E_{cavity} \end{array}
ight)$ 



## Efficient optimization

#### Aim:

Find  $\mathbf{x}_{min}$  with **few** evaluations of f

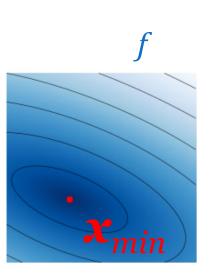
#### Motivation: evaluations of f are usually costly

### Design studies:

Evaluations of *f* require **computationally expensive** numerical simulations

#### Online tuning:

Evaluations of *f* take time on the machine Parameters of the machine may drift if it takes too long to find the minimum.



## Minimization vs maximization

#### **Minimization:**

Find 
$$\mathbf{x}_{min}$$
, such that  $\forall \mathbf{x} \in \Omega$ ,  $f(\mathbf{x}_{min}) \leq f(\mathbf{x})$ 

#### **Maximization:**

Find 
$$\mathbf{x}_{min}$$
, such that  $\forall \mathbf{x} \in \Omega$ ,  $f(\mathbf{x}_{min}) \geq f(\mathbf{x})$ 

In order to **maximize** a function f, one can simply pass the function -f to a **minimization** algorithm.

In the rest of this course, we will focus on minimization algorithms.



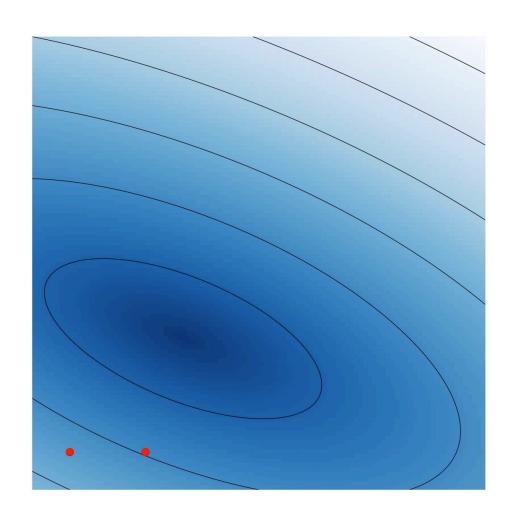
# Naive algorithm: grid search

#### Algorithm:

Systematically evaluate f at points separated by **a fixed step** in each direction. At the end: find the best point among them.

#### **Practical consideration:**

- Takes a long time to even reach interesting regions.
- Scales badly with dimensionality!
- Does not use the information from previous evaluations of f to decide which point to evaluate next.





# Naive algorithm: random search

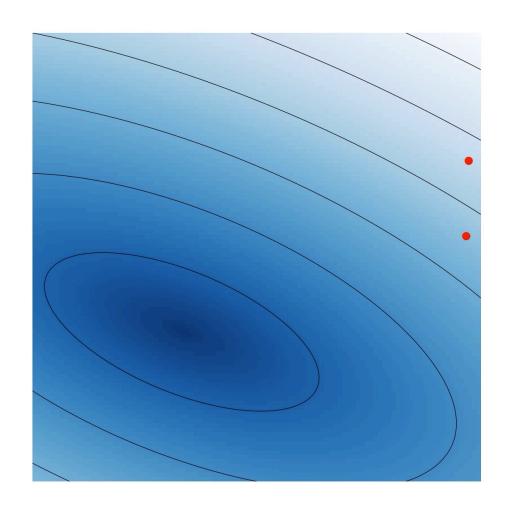
#### Algorithm:

Evaluate f at randomly chosen points.

At the end: find the best point among them.

#### **Practical consideration:**

- May evaluate points that are close to each other and do not bring significantly more information
- Scales badly with dimensionality!
- Does not use the information from previous evaluations of f to decide which point to evaluate next.





## Human intervention

### Algorithm:

A human being chooses the points to evaluate

#### **Practically consideration**

- Humans sometimes accumulate unique experience/knowledge of a given accelerator
- But: slow reaction time

 Biases, bad at dealing with more than 1 or 2 dimensions (usually perform 1D search)



# **Outline**

- Example and motivation for particle accelerators
- Optimization: general definition and naïve algorithms
- Some common optimization algorithms
  - Nelder-Mead algorithm
  - Gradient-descent
  - Extremum Seeking
- Some general terms



# Nelder-Mead simplex: algorithm

Choose N+1 arbitrary initial points
 (where N is the dimension of the input x of the objective function f)

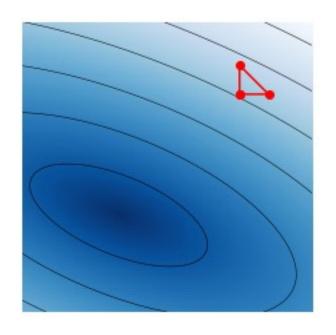
 Evaluate f at these points.

#### Note:

These points define a "simplex". (The points are the "vertices" of the simplex.)

- In 2D (N=2), a simplex is a triangle.
- In 3D (N=3), a simplex is a terahedron.

#### 2D example: 3 initial points





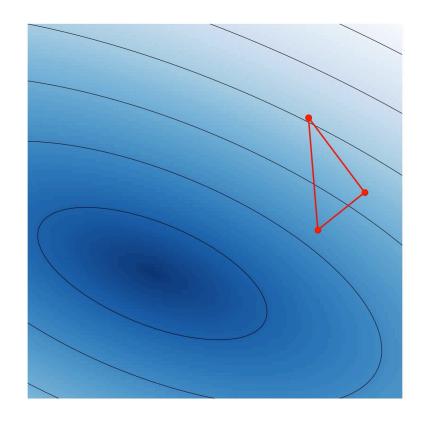
# Nelder-Mead simplex: algorithm

Choose N+1 arbitrary initial points
 (where N is the dimension of the input x of the objective function f)

 Evaluate f at these points.

#### • Iteratively:

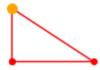
- Move vertices according to a set of basic rules (see next slide)
- Evaluate objective function f
   at the new vertices



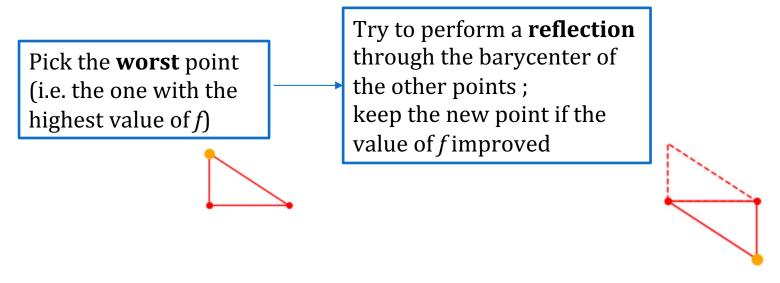
• These rules effectively result in the simplex moving **towards the minimum**. The N+1 vertices allow to "feel" the direction in which to move (without calculating the gradient).



Pick the **worse** point (i.e. the one with the highest value of *f*)

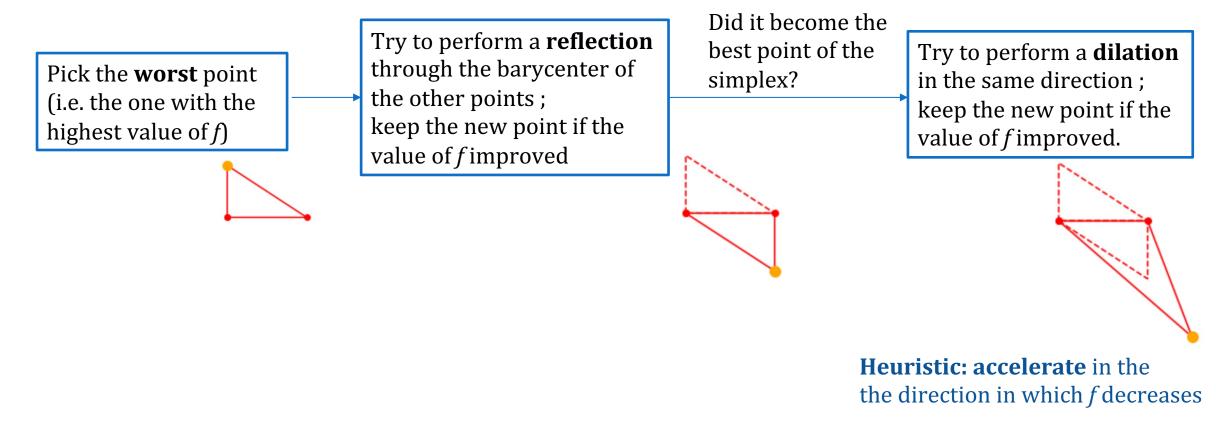






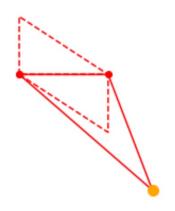
**Heuristic:** try to move **away** from the high values of *f* 

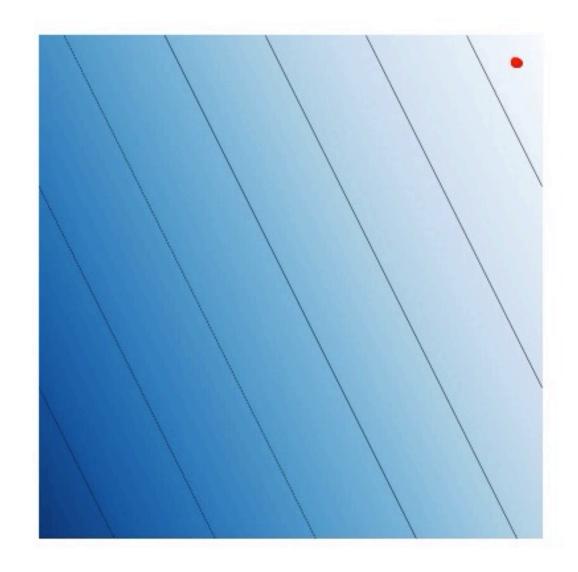




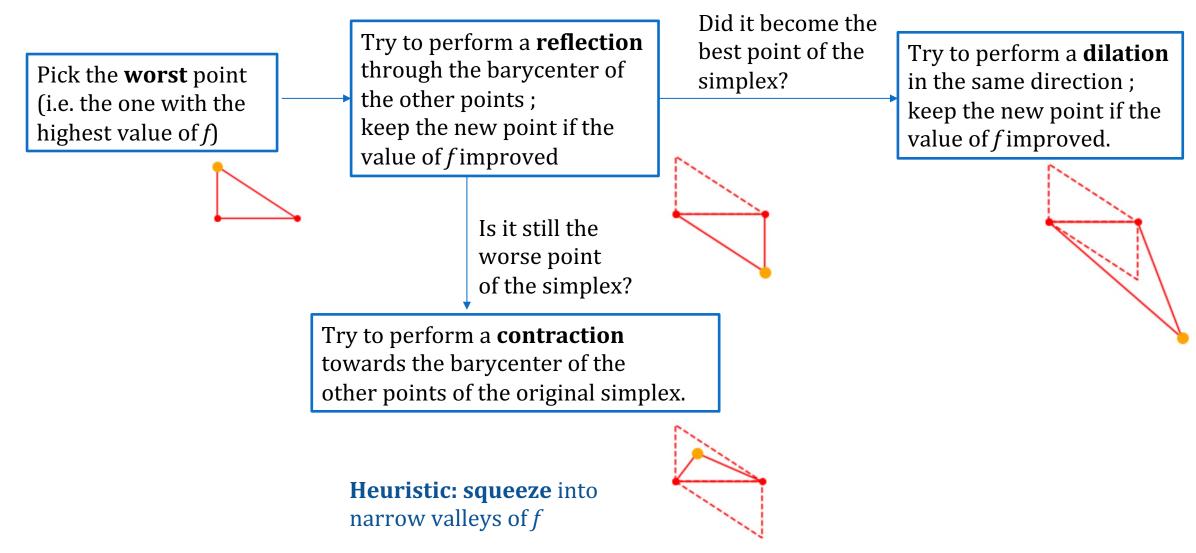


Simplex accelerating in the direction of decreasing *f*:



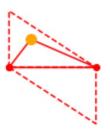


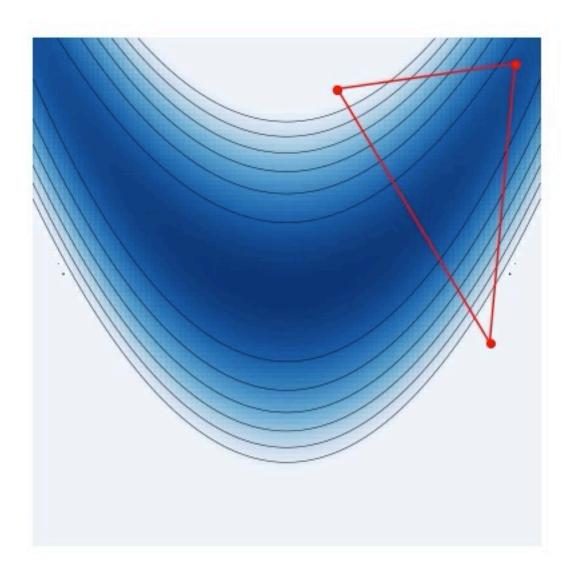




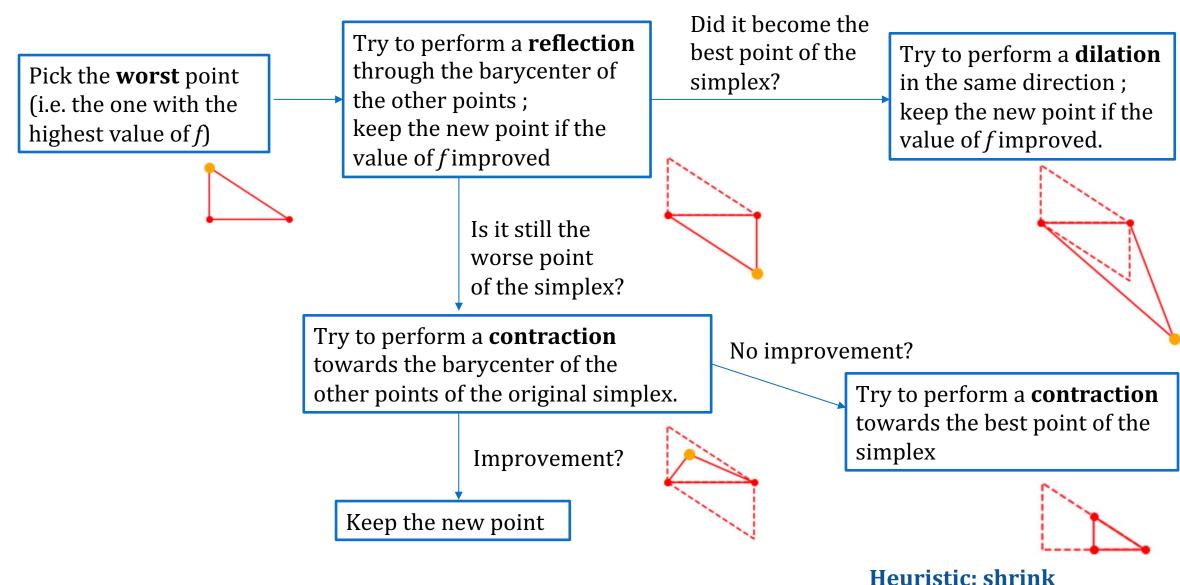


Squeeze into narrow valleys of *f* 





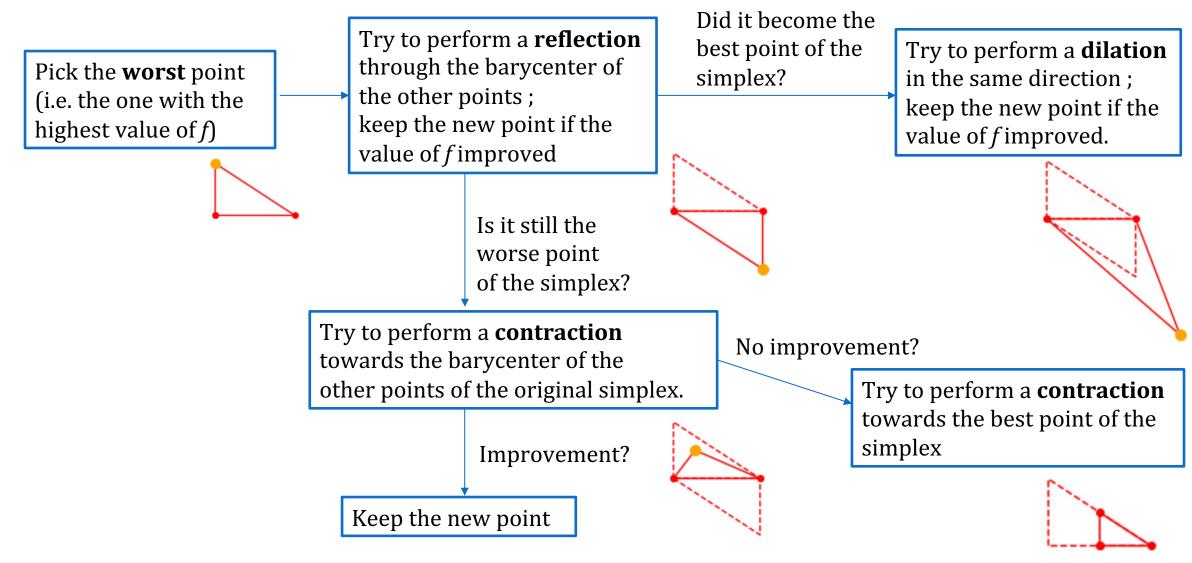




Exact algorithm with code: Press et al., "Numerical Recipes"

into a trough of *f* 





+ Reiterate until convergence



# How to use the Nelder-Mead simplex in Python

## from scipy.optimize import fmin



#### scipy.optimize.fmin

scipy.optimize.fmin(func, x0, args=(), xtol=0.0001, ftol=0.0001, maxiter=None, maxfun=None, full\_output=0, disp=1, retall=0, callback=None, initial\_simplex=None) [source]

Minimize a function using the downhill simplex algorithm.

This algorithm only uses function values, not derivatives or second derivatives.

Parameters: func : callable func(x,\*args)

The objective function to be minimized.

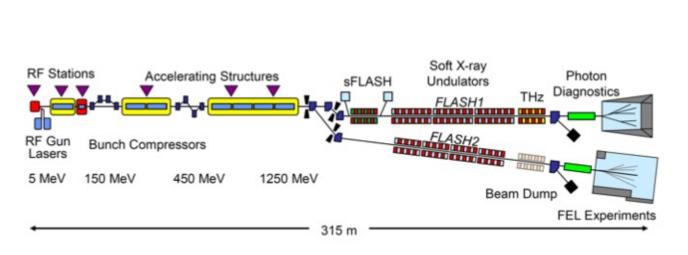
x0: *ndarray*Initial guess.

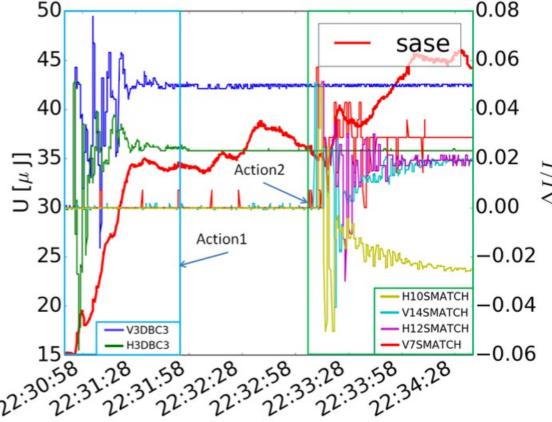


## Nelder-Mead simplex: example

#### Online optimization at the FLASH FEL (DESY):

Maximized FEL radiation ("sase" curve) with Nelder-Mead algorithm by tuning two groups of beam optics elements ("Action 1" and "Action 2")





I. Agapov et al., "Automatic tuning of Free Electron Lasers" (2017) <a href="https://arxiv.org/abs/1704.02335">https://arxiv.org/abs/1704.02335</a>



# Nelder-Mead simplex: practical considerations

- Relatively robust
- Extensively used for online tuning of accelerators
   Often considered as a baseline method in literature on optimization
- However, requires many evaluations of f compared to other methods
- Not very robust to noise
- No parallel evaluation (the algorithm is intrinsically sequential)

# **Outline**

- Example and motivation for particle accelerators
- Optimization: general definition and naïve algorithms
- Some common optimization algorithms
  - Nelder-Mead algorithm
  - Gradient-descent
  - Extremum Seeking
- Some general terms



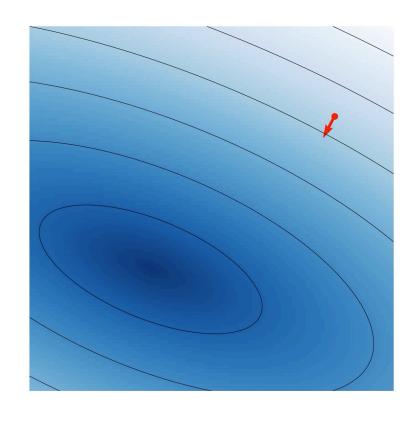
## Gradient-descent: algorithm

- Calculate the **local gradient** of f
- Move in the opposite direction (i.e. towards the minimum)

$$\boldsymbol{x}_{n+1} = \boldsymbol{x}_n - \alpha \boldsymbol{\nabla} f(\boldsymbol{x}_n)$$

 $\alpha$ : "step size" (optimization)

Iterate



**Note:** Gradient-descent is also **very common** in the context of **machine learning**. In this case: f is the "loss function" (accuracy of the ML model),  $\alpha$  is the "learning rate". (See Wednesday's lecture)



# Gradient-descent: how to choose the step size $\alpha$

$$\boldsymbol{x}_{n+1} = \boldsymbol{x}_n - \alpha \boldsymbol{\nabla} f(\boldsymbol{x}_n)$$

#### **Trade-off:**

- If  $\alpha$  is too small: converges slowly (inefficient)
- If  $\alpha$  is too large: may not converge

#### Common methods to choose $\alpha$ :

- Fixed, small value (e.g.  $\alpha = 10^{-2}$ )
- Adaptive: e.g. Adagrad, RMSProp algorithms (often used in ML context: see next week's lecture)

### **Step size too small:**





# Gradient-descent: how to choose the step size $\alpha$

$$\boldsymbol{x}_{n+1} = \boldsymbol{x}_n - \alpha \boldsymbol{\nabla} f(\boldsymbol{x}_n)$$

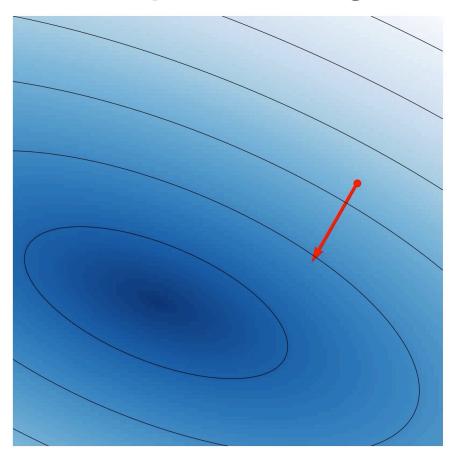
#### **Trade-off:**

- If  $\alpha$  is too small: converges slowly (inefficient)
- If  $\alpha$  is too large: may not converge

#### Common methods to choose $\alpha$ :

- Fixed, small value (e.g.  $\alpha = 10^{-2}$ )
- Adaptive: e.g. Adagrad, RMSProp algorithms (often used in ML context: see next week's lecture)

### **Step size too large:**





# Gradient-descent: how to calculate the gradient

#### **Analytical calculation:**

- Never possible if f is obtained from real-time measurements
- Sometimes possible when f is obtained from **numerical simulations** (some programming frameworks can automatically track the derivatives of every single mathematical operation in the simulation, e.g. autograd)
- Often possible when f is the loss function of an ML model

#### **Numerical differentiation:**

$$\frac{\partial f}{\partial x_i} pprox rac{f(x_i + h) - f(x_i)}{h}$$
 for **each** input parameter  $x_i$ 

#### with *h* small

- Requires many (expensive) evaluations of f
- Sensitive to any noise in f



# Numerical differentiation: sensitivity to noise

Assume evaluations of f are **noisy**:

$$f(\boldsymbol{x}) = \tilde{f}(\boldsymbol{x}) + \eta$$

### **Noiseless part:**

always gives the same result, for a given **x** 

Stochastic part: value changes for each evaluation, with RMS  $\sigma_n$ 

#### Numerical differentiation:

$$\frac{f(x_i + h) - f(x_i)}{h} = \frac{\tilde{f}(x_i + h) - \tilde{f}(x_i)}{h} + \left(\frac{\eta' - \eta}{h}\right)$$

$$\approx \frac{\partial \tilde{f}}{\partial x_i} + \left(\frac{\eta' - \eta}{h}\right)$$

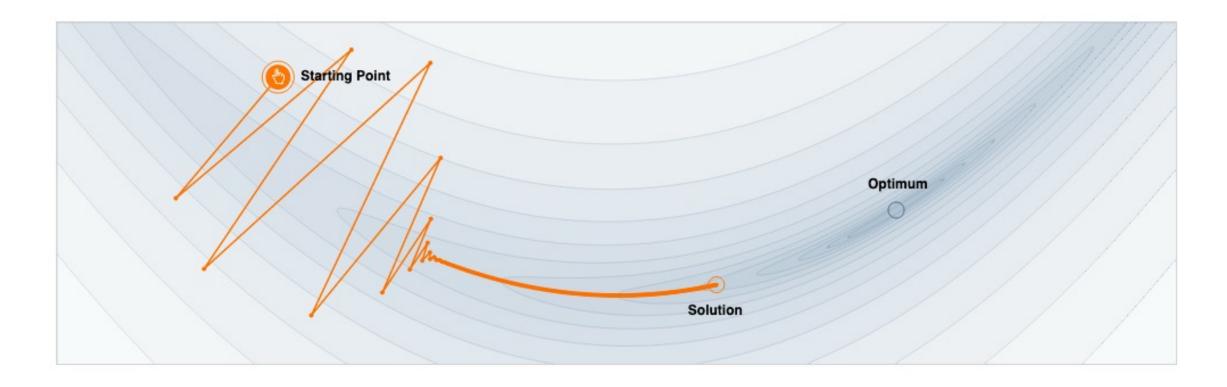
Stochastic term, with RMS  $\frac{\sqrt{2}\sigma_{\eta}}{h}$ 

For small *h*, numerical differentiation **amplifies** the noise.



# Gradient descent: the "valley problem"

If the objective function f presents a **long narrow valley**, gradient-descent converges very slowly.



Source: <a href="https://distill.pub/2017/momentum/">https://distill.pub/2017/momentum/</a>



# One possible solution: gradient descent with momentum

**Gradient descent:** 

$$\boldsymbol{x}_{n+1} = \boldsymbol{x}_n - \alpha \boldsymbol{\nabla} f(\boldsymbol{x}_n)$$

Gradient descent with momentum:

$$\mathbf{v}_{n+1} = \beta \mathbf{v}_n - \nabla f(\mathbf{x}_n)$$
 $\mathbf{x}_{n+1} = \mathbf{x}_n + \alpha \mathbf{v}_{n+1}$ 

$$0 < \beta < 1$$

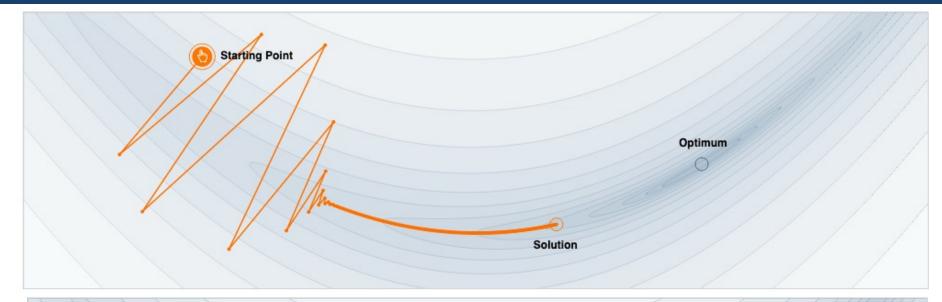
- For  $\beta = 0$ : gradient descent with momentum reduces to regular gradient descent
- But for  $\beta$  close to 1,  $v_n$  effectively accumulates  $-\nabla f$  over past iterations
- Similar to a point moving under a force  $-\nabla f$ , with a friction coefficient proportional to  $(1 \beta)$



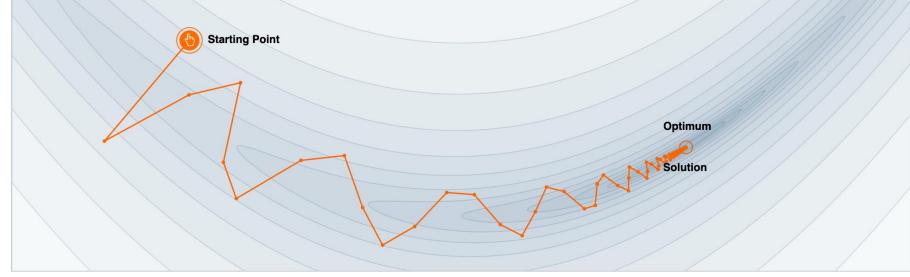
# The "valley problem"

No momentum:

$$(\beta = 0)$$



With momentum:  $(\beta = 0.85)$ 



Source: <a href="https://distill.pub/2017/momentum/">https://distill.pub/2017/momentum/</a>



## Gradient descent: practical considerations

- Requires to carefully choose the step size; issues with narrow valleys.
   (unless one uses gradient descent with momentum)
- Requires a reliable way to evaluate gradient (e.g. analytically)
- Relatively rarely used for optimization of particle accelerators, at least for the standard version of gradient descent
- Widely used within machine learning algorithm to optimize the loss function
- No parallel evaluation (the algorithm is intrinsically sequential)

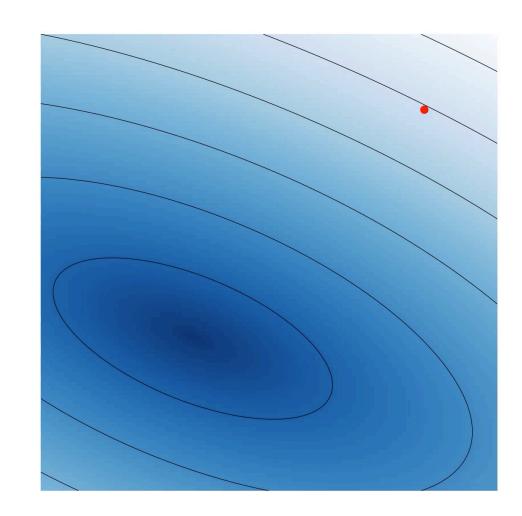
# **Outline**

- Example and motivation for particle accelerators
- Optimization: general definition and naïve algorithms
- Some common optimization algorithms
  - Nelder-Mead algorithm
  - Gradient-descent
  - Extremum Seeking
- Some general terms



## Extremum seeking: introduction

- In simplex and gradient descent
   (with finite-difference derivative)
   the direction in which to move is inferred by sampling neighboring points.
- In extremum seeking, neighboring points are sampled by performing small oscillations.
- The aim here is not to be efficient, but rather to be robust for real-time dynamic systems (e.g. operating accelerators, in real-time, with drifts)



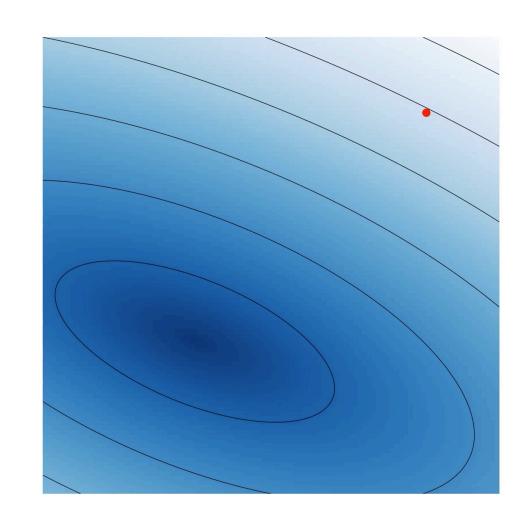


## Extremum seeking: algorithm

At each step, the coordinates of the point are updated with:

$$x_{i,n+1} = x_{i,n} + \Delta t \sqrt{\alpha \omega_i} \cos(\omega_i n \Delta t + k f(\boldsymbol{x}_n))$$

- $\omega_i$ : real-time frequency of the oscillations (needs to be different for each coordinate for the method to work)
- $\Delta t$ : real-time interval between evaluations
- $\alpha$ : controls the amplitude of the oscillations
- k: controls in which direction the average motion goes.





## Extremum seeking: why does it work?

 The algorithm does not explicitly calculate the gradient (like gradient descent) or explicitly compare points (like simplex): how does it work?

$$x_{i,n+1} = x_{i,n} + \Delta t \sqrt{\alpha \omega_i} \cos(\omega_i n \Delta t + k f(\boldsymbol{x}_n))$$

- Note that the effective frequency of the oscillation is:  $\omega_i + k \frac{\partial f}{\partial t}$ If the point is at a phase where it is **already** moving towards a minimum, then  $\frac{\partial f}{\partial t} < 0$ , and the point will **spend more time at this phase**. (similarities with  $\nabla B$  drift for a charged particle gyrating in a non-uniform B field)
- Mathematically, it can be showed that the average motion satisfies

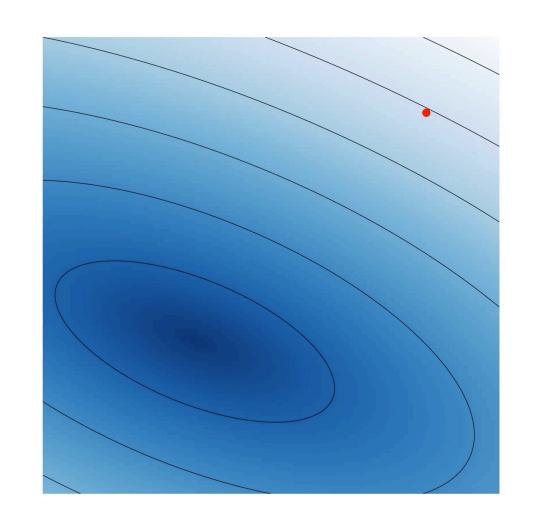
$$\frac{d\langle \boldsymbol{x}\rangle}{dt} = -\frac{k\alpha}{2} \boldsymbol{\nabla} f(\langle \boldsymbol{x}\rangle)$$



## Extremum seeking: choosing parameters

$$x_{i,n+1} = x_{i,n} + \Delta t \sqrt{\alpha \omega_i} \cos(\omega_i n \Delta t + k f(\boldsymbol{x}_n)) \qquad \frac{d\langle \boldsymbol{x} \rangle}{dt} = -\frac{k\alpha}{2} \nabla f(\langle \boldsymbol{x} \rangle)$$

- $\omega_i$ : needs to be fast compared to the drifting motion (again, needs to be different for each i)
- $\Delta t$ : needs to be small compared to  $\omega_i$
- $\alpha$ : can be reduced as we get close to the minimum, in order to reduce the amplitude of the oscillation motion.

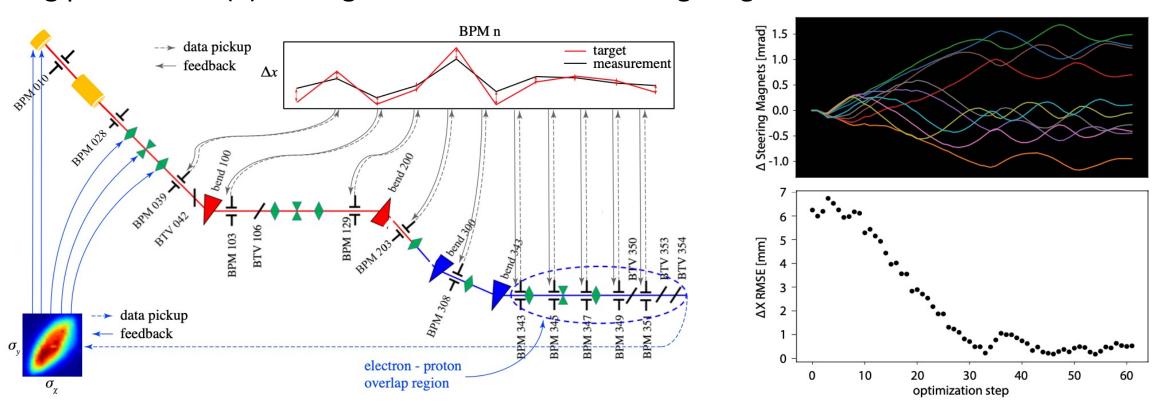




## Extremum seeking: example at the AWAKE electron beam line

#### Aim: maintain beam on a target trajectory

Objective function (f): distance of beam centroid to the target trajectory, as measured by BPMs Tuning parameters (x): strength of 10 different steering magnets



Scheinker et al., "Online Multi-Objective Particle Accelerator Optimization of the AWAKE Electron Beam Line for Simultaneous Emittance and Orbit Control" (2020) https://arxiv.org/abs/2003.11155v1

# **Outline**

- Example and motivation for particle accelerators
- Optimization: general definition and naïve algorithms
- Some common optimization algorithms
  - Nelder-Mead algorithm
  - Gradient-descent
  - Extremum Seeking
- Some general terms



## Optimization with constraints

## **Constraints directly on the input parameters:**

e.g. minimize emittance by tuning steering magnets while ensuring that the **current that controls steering magnet** stays within a safe range.

Typical form: minimize f(x) while ensuring  $x_i \le x_{max}$  for a given i and  $x_{max}$ 

Easy to implement: simply restrict the domain  $\Omega$  over which the optimization is performed.

Constraints that depend on the input parameters, but are difficult to predict and need to be measured/simulated:

e.g. minimize energy spread by tuning beam optics, while ensuring that the **beam loss** stays below a given threshold

Typical form: minimize f(x) while ensuring  $g(x) \le g_{max}$ 

More difficult to implement: need a to learng a model that can predict g and ensure that the optimization algorithm will not access unsafe parameters



## Derivative-based vs. derivative-free optimization algorithm

## **Derivative-based algorithm**

The algorithm requires a way to evaluate the derivative of *f*.

#### Examples:

Gradient-descent

### **Derivative-free algorithm**

The algorithm does not need to evaluate the derivative (only evaluates *f* itself).

#### Examples:

- Nelder-Mead
- Extremum Seeking



## Parallelizable vs. sequential optimization algorithm

#### Sequential algorithm

The point at which f is evaluated **depends** on the results of **all past evaluations**. Evaluations of f have to be carried out **sequentially**.

#### Examples:

- Nelder-Mead
- Gradient-descent
- (Extremum Seeking)

### Parallelizable algorithm

Evaluations of *f* are (at least partially) **independent** and can be **carried out in parallel.** 

#### Examples:

- Random search
- Grid search

Important for simulation-based design studies:

Parallel optimization algorithms allow independent simulations to be carried out on separate computational resources.



## Local vs. global optimization algorithm

## **Local algorithm**

Is likely to get "stuck" in **local** minima.

### Examples:

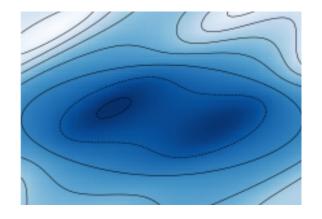
- Nelder-Mead
- Gradient-descent
- Extremum Seeking

## **Global algorithm**

Attempts to find the global minimum, even in the presence of local minima.

## **Examples:**

- Random search
- Grid search





## Single-objective vs. Multi-objective optimization

## Single-objective

Finds the minimum of a single **scalar** function.

#### Examples:

- Nelder-Mead
- Gradient-descent
- Extremum Seeking

## **Multi-objective**

Simultaneously optimize **several** (potentially conflicting) functions; find the optimal **trade-off** 

See tomorrow's lecture



Thanks for your attention.

Feel free to ask questions!