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Very Brief Reinforcement Learning History

• Came out of trying to understand animal and human 
behavior, and in turn design systems capable of learning 
like animals and humans

• Many parallels to classical / optimal control and Bayesian 
optimization (developed in different communities)

• Some major milestones in deep (i.e w/ NNs) RL:
- 1992:  TD-Gammon, human-level backgammon via self-play
- 2013: Atari games, comparable to a human game tester; 

used deep Q-networks and CNNs (analyze state of the board)
- 2015: AlphaGo beats Go champions; used initial supervised 

learning to imitate expert players; monte-carlo tree search 
with value network and policy network

- 2017: AlphaZero beats Go champions without any human 
examples; counter-intuitive solutions studied

example from a 1976 entry of Richard Sutton’s research notebook
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Basic Setup for an RL Problem

State – system information at present time 

Action  – a change the agent can make to the environment

Reward – scalar return from the environment at present time

Episode – sequences of (state1 à action1 à state2 + reward2); ends on some terminal condition 

Agent acts according to a policy (𝛑) – determines actions to take based on observed state

Agent Environment

State (         ) , Reward (          )

Action (      )

RL agent interacts with an environment over time à goal is to maximize total returned reward

Initial
State
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• bounded [(-1.2, 0.6), (-0.07, 0.07)]

• initialized randomly at [(-0.6, -0.4), 0] 

Action:

• accelerate left [-1]

• accelerate right [+1]

• don’t accelerate [0]

Reward:

• 0 if reach the top (position = 0.05)

• -1 if position is < 0.5

Episode:

• Ends if position > 0.5 or episode length > 200

Problem formulated in: A Moore, Efficient Memory-Based Learning for Robot Control, PhD thesis, University of Cambridge, 1990.
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Continuous vs. Discrete State and Action Spaces

à Usually in accelerators we are dealing with continuous state and action spaces

State and action spaces can be discrete or continuous

Actions: discrete move one square up, down, left, right
State: discrete position on board

Actions: discrete acceleration factor [-1, 1, 0]
State: continuous position and velocity 

Clip art from wikipedia



Returns and Episodes

à prioritize near-term rewards

Trying to maximize total estimated return à how much should we care about near-term vs. long-term 
rewards? 

Total expected return

Discount factor,

Can re-write in a form that will be useful in trying to learn an estimate of total reward:



Value Functions

Useful to estimate the expected long term reward at time t à encoded as value functions

Can be based on the present state, or a state-action pair

(S, A) Q(S, A)
S1

A1

S2

A2

S3

A3

Q(S1, A1)

Q(S2, A1)

Q(S1, A2)

Q(S2, A2)

Q(S1, A3)

Q(S2, A3)

Q(S3, A3)Q(S3, A2)Q(S3, A1)

Tabular Q-function Parameterized Q-function

Best method for encoding 
the value function depends 
on the size of the state and 
action space (and whether 
it is continuous or discrete)



Policies

Option 1: Estimate value function, then use it to choose 
- Greedy policy  – always choose the best action

- ℇ-greedy policy  – take random action with probability ℇ, 
otherwise take the greedy action (adds exploration)

Option 2: Parameterize the policy directly 
- Mapping states directly to best actions
- Try to improve the policy by adjusting 𝜃

Option 3: Have a world model (for state transitions                   )?
- Can explicitly plan with model to choose the best action
- Examples: LQR, Model Predictive Control
- Model could be analytic or learned

(e.g. GPs, NNs, GMM, etc)

{

𝑎& = max
'
𝑄(𝑠& , 𝑎)

Could be costly if have big 
or continuous action space!

Environment 
Model

Environment

Planningpossible 
action series

predicted
reward

chosen action

𝜋( 𝑎 𝑠

𝑄(𝑠, 𝑎)(𝑠, 𝑎)

𝑠& 𝑎& 𝜋( 𝑎 𝑠

𝑎&

𝑠&
𝑠& 𝑠&)"

Policy — how we decide to take certain actions given an observed state

𝑎&

- Can backpropagate through model to learn policy
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Option 2: Parameterize the policy directly 
- Mapping states directly to best actions
- Try to improve the policy by adjusting 𝜃

Option 3: Have a world model (for state transitions                   )?
- Can explicitly plan with model to choose the best action
- Examples: LQR, Model Predictive Control
- Model could be analytic or learned

(e.g. GPs, NNs, GMM, etc)
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Wide Variety of RL Algorithms…

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
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For accelerator physicists, it is conceptually useful to think about model predictive control first:
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Model Predictive Control

For accelerator physicists, it is conceptually useful to think about model predictive control first:

Basic concept: 

1. Use a predictive model to assess the outcome of possible future actions

2. Choose the best series of actions by optimizing a set of planned actions, 
with respect to a cost function over a set time horizon

3. Execute the first action

4. Gather next time step of data

5. Repeat

past present        future



Model Predictive Control

past present        future

Predicted cost is calculated over future time horizon:

Note: “process” and “plant” come from classic control à it’s the system being controlled



Where does this apply?

Transport delays, variable heat load, complex dynamics

RF accelerating cavities (e.g. resonance control)

Many of the problems we discussed so far in the class are singe timestep input, single-timestep output problems 
à when control actions are taken at a faster rate than the system dynamics, we need to take into account time-evolution of system

Transport delays, variable heat load
Efficient servers were not enough 
--> needed better control of cooling system

https://googleblog.blogspot.com

Cryogenic 
systems



Example: Resonant Frequency Control at FAST

Existing Feedforward/PID Controller

Note differences in scales!

Model Predictive Controller

Applied model predictive control with a neural network model 
trained on measured data

~ 5x faster settling time + no large overshoot Gun Water
System Layout

Resonant frequency controlled via temperature 
• Long transport delays and thermal responses
• Two controllable variables: heater power + flow valve aperture

Note that the oscillations are largely due to the transport delays and water recirculation, rather than PID gains Edelen, IPAC’15 ; Edelen, TNS, 2016



Model Predictive Control: Analogies to Model-free RL

MPC: explicitly calculating the future time horizon and 
optimizing actions over it, given present state

Instead, model-free RL methods try to estimate aspects of this

Estimate total future reward (cost over prediction horizon) given

and/or 

Find a map between      and first optimal action       (skip optimization)

𝑠& 𝑎&

𝑠& 𝑎&
(policy gradient)

(value function)



Where in accelerators might one want to use RL?

• Cases where time dependencies matter relative to control actions 
(e.g. rf control, slow time delays etc)

• Learning an optimization algorithm
- episode length becomes number of steps allowed

• Control / fast switching between setups:
- e.g. trajectory control
- e.g. phase space shaping inverse model à add fine tuning with RL



Example: Backprop through model to learn policy

Goal: Rapid switching between energies (with appropriate match into undulator) for a compact THz FEL

Edelen et al., NeurIPS 2017; IPAC’18
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Left out some 
energy ranges 

Supervised 
pre-training



Goal: Rapid switching between energies (with appropriate match into undulator) for a compact THz FEL

Edelen et al., NeurIPS 2017; IPAC’18

Left out some 
energy ranges 

Supervised 
pre-training

Use backprop through model while exploring new regions of parameter space 
à periodically update model

Example: Backprop through model to learn policy



Example: Backprop through model to learn policy

Goal: Rapid switching between energies (with appropriate match into undulator) for a compact THz FEL

Edelen et al., NeurIPS 2017  ;  IPAC’18

Example from 
running simplex on 
the simulation 

à ~ 170 iterations 
to converge for 
new energy target

NN policy can reach 

in one iteration for new target energies



Example: Trajectory Control

Edelen IPAC’18



Example: Trajectory Control

Edelen IPAC’18



Limitations of Model-Based RL

• Need a model!
• May not have one
• Can be harder to learn than policy

• Model setup
• How expressive?
• How fast?

• Model errors à how to handle where model is 
confident but wrong

• Need a good model, but a good model does not 
guarantee a good policy!

Easy policy, difficult model



Value-Based Methods: Temporal Difference Learning

Update value function according to gradient descent at the end of an episode:

How to learn a value function from experience [i.e.  (state, action, reward) tuples]?
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Value-Based Methods: Temporal Difference Learning

Update value function according to gradient descent at the end of an episode:

Bootstrap by using the next estimate of the value function as an approximation for           :

The error estimate is known as the TD error:

How to learn a value function from experience [i.e.  (state, action, reward) tuples]?

The value function can be written as:

Temporal Difference Equation TD(0)

Sutton, 1998



On-policy vs. Off-policy Learning

On-policy — need new samples / retrain whenever policy is changed
(e.g. policy gradients)

Off-policy — can improve policy without obtaining new samples from that policy
(e.g. Q-learning)



Example for value based methods: SARSA vs. Q-Learning

Q learning will converge to the optimal policy, 
but falls off the cliff a lot in the process

Figures from Sutton & Barto, 1998



Deep Q-Learning (DQN)

• Mnih et al., Playing Atari 
with Deep Reinforcement 
Learning(2013) 
https://www.cs.toronto.e
du/~vmnih/docs/dqn.pdf

• ℇ-greedy policy + 
Q-learning

• Experience replay

• CNN layers in Q-function 
to analyze the board

HNeat –hand-engineered features
Breakout, Enduro and Pong > human
Others require policies over long timescales

https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf


• Can be difficult to stabilize à best to test on simple problems first

• Use large replay buffers to help stabilize learning

• Takes time to converge à will look random for awhile

• If using ℇ-greedy policy, start with high ℇ

Deep Q-Learning Tips



Deep Deterministic Policy Gradients (DDPG)

Lillicrap et al., Continuous Control with Deep 
Reinforcement Learning, (2016) 
https://arxiv.org/pdf/1509.02971v6.pdf

Silver et al., Deterministic Policy Gradient Algorithms, 
(2014) http://proceedings.mlr.press/v32/silver14.pdf

Main elements:

• Learn Q values through experience replay buffer

• Update policy via Q function estimate + backprop 

• Use target networks to stabilize learning 
à time-delayed versions of each network

• Ornstein-Uhlenbeck process to add noise to the 
action output for exploration
(Uhlenbeck & Ornstein, 1930)

https://arxiv.org/pdf/1509.02971v6.pdf
http://proceedings.mlr.press/v32/silver14.pdf


Recap: High-Level View

Generate Samples 
(interact with environment)

Improve Policy

Estimate Model or 
Value Function

Experience Replay Buffer Saves buffer of previous samples 
à helps stabilize learning by avoiding correlated sequences

Partially adapted from S. Levine



Sample Efficiency

Chart from S. Levine



Sample Efficiency

Slide from S. Levine



Choosing different RL methods

Slide from S. Levine



Choosing different methods

Model-based RL

• Possible transfer between tasks

• Model can be harder to learn than policy

• Don’t directly optimize for the task at hand; no 
guarantee that better model will translate to better 
policy

• Typically more sample-efficient Easy policy, difficult model

Tradeoffs:
Sample-efficiency

User-friendliness/stability

Where the main difficulty is:
Estimating model?
Estimating policy?

Obtaining samples?

Assumptions about environment:
Continuous/discrete

Stochastic/deterministic

Policy Gradient

• Directly optimizing task at hand

• Not sample efficient

Value Functions

• Minimize error, may not accurately 
represent real expected reward

• No convergence guarantees

• Can be quite sample efficient



Example: FEL taper optimization

Wu et al., Recent Online Taper Optimization at LCLS, 
FEL’17 
https://accelconf.web.cern.ch/fel2017/papers/tub04.pdf

Compared a variety of optimization methods, including 
policy gradient RL

• Variables: taper magnets
• Target: FEL pulse energy

• RL found a “zig-zag” taper profile that had 2x pulse 
energy

https://accelconf.web.cern.ch/fel2017/papers/tub04.pdf


Example: offline training with a model

Took measured scan data at UCLA Pegasus 
beamline à trained neural network  model 
to predict fits to beam image

Tested online multi-objective optimization 
over model (3 quad settings) given present 
readings of other inputs x_rms

y_
rm

sNeural 
Network

Readings for other inputs
(at start of optimization only)

Flat Beam Quads (3)

x rms
y rms

pixel intensity
sigma xy

x,y centroids

Genetic 
Algorithm

Pareto front

Beam result for one 
full day after last 

training data

Expert hand-tuning: 
10 – 20 minutes
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Pegasus beamline layout with selected distances

updated 1/18/2019 

quads used for flat beam screen location

Also applied reinforcement learning (DDPG):

à Trained offline using learned model

à Transferred to machine for retraining 
(6 months later)

Round-to-flat beam transforms are 
challenging to optimize

SLAC + UCLA collab: Cropp, in preparation



Example: HGHG FEL Optimization

F. O’Shea et al., Policy gradient methods for free-electron laser and terahertz source 
optimization and stabilization at the FERMI free-electron laser at Elettra, (2020) 
https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.23.122802

• Compared a variety of policy gradient methods for optimization and stabilization 
at FERMI for two tasks

• Settings: three kinds of magnets, piezo motors for laser alignment, and a 
mechanical delay stage for a seed laser

• Targets: the output energy of an HGHG FEL and the amount of Terahertz 
radiation produced

• Used same agent for the two different tasks

dispersive strength + laser delay
à black lines are human settingsFEL energy

https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.23.122802


Example: Trajectory Control at CERN

Kain et al., Sample-efficient reinforcement learning for CERN accelerator 
control (2020) 
https://journals.aps.org/prab/pdf/10.1103/PhysRevAccelBeams.23.124801

Aim: trajectory control for AWAKE and LINAC4

Used Normalized Advantage Function (Q-learning variant)

Setup for AWAKE : 

• 30 minutes training for 11 degrees of freedom 350 iterations 

• Reset to random position at start of episode (no more than 7mm RMS 
offset – 2-3 x above normal)

• Limited corrector step size to 300urad

Tested agent 3 months later and still had good performance

online learning

3 months after last training

https://journals.aps.org/prab/pdf/10.1103/PhysRevAccelBeams.23.124801


A Note on Reward Functions

• Reward functions may not account for un-intuitive behavior or implicit values
- Classic example: reduce office paper consumption à solution is to kill all humans

• Big concern in AI safety, see https://openai.com/blog/concrete-ai-safety-problems/

“ We assumed the score the player earned would reflect the informal goal of
finishing the race, so we included the game in an internal benchmark designed to
measure the performance of reinforcement learning systems on racing games.
However, it turned out that the targets were laid out in such a way that the
reinforcement learning agent could gain a high score without having to finish the
course. This led to some unexpected behavior when we trained an RL agent to play
the game.

The RL agent finds an isolated lagoon where it can turn in a large circle and
repeatedly knock over three targets, timing its movement so as to always knock
over the targets just as they repopulate. Despite repeatedly catching on fire,
crashing into other boats, and going the wrong way on the track, our agent
manages to achieve a higher score using this strategy than is possible by
completing the course in the normal way. Our agent achieves a score on average
20 percent higher than that achieved by human players.”

https://youtu.be/tlOIHko8ySg https://openai.com/blog/faulty-reward-functions/

https://openai.com/blog/concrete-ai-safety-problems/
https://openai.com/blog/faulty-reward-functions/


OpenAI gym

OpenAI gym has standards for interfacing with different environments and makes it easy to build 
your own environment: https://gym.openai.com/

Also has  leaderboards with writeups of different solutions

https://github.com/openai/gym/wiki/Leaderboard

https://gym.openai.com/
https://github.com/openai/gym/wiki/Leaderboard


Questions?



Classic Textbooks

• Miller, Werbos, Sutton, Neural Networks for Control, https://mitpress.mit.edu/books/neural-
networks-control (1990)

• Bertsekas and Tsitsiklis, Neuro-dynamic Programming, http://athenasc.com/ndpbook.html ( 
1996)

• Sutton and Barto, Reinforcement Learning: An Introduction, 
http://incompleteideas.net/book/the-book-2nd.html (1996, 2018)

https://mitpress.mit.edu/books/neural-networks-control
http://athenasc.com/ndpbook.html
http://incompleteideas.net/book/the-book-2nd.html

