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Example: Free-Electron lasers (e.g. European XFEL, LCLS II)

Example of objective:
Maximize amount of X-ray 
photons, during operation

Example of tuning parameters:
• Strength of steerer magnets
• Strength of FODO quadrupoles
• RF parameters (phase and 

accelerating gradient)
Source: https://lcls.slac.stanford.edu/lcls-ii



Example: storage ring (e.g. ALS, SPEAR3)
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Example of objective:
Maximize injection efficiency

Example of tuning parameters:
Strength of sextupole magnets

Source: https://journals.aps.org/prab/pdf/10.1103/PhysRevSTAB.18.084001



Example: electron injector for LCLS-II
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Example of objective:
Minimize bunch length and 
emittance, at the end of the 
injector

Example of tuning parameters:
• Duration and transverse size of laser pulse
• Magnetic field in solenoids
• Buncher field
• Accelerating gradient in RF cavities

Source: https://accelconf.web.cern.ch/IPAC2014/papers/wepro015.pdf



Optimization for particle accelerators: motivation
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Design study, before building hardware:
• Aim: choose best nominal parameters, predict optimal performance
• Mainly based on numerical simulations
• Some unique features: evaluation in parallel

Online tuning of existing hardware:
• Aim: get optimal performance during operation ; maintain despite drifts
• Mainly based on real-time measurements
• Some unique features: noise, hysteresis (e.g. magnetic elements), drifts (e.g. 

temperature)
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Optimization: general definition and notation
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Definition (minimization)

x: vector of input parameters (“knobs”, “tuning parameters”)
f: function to minimize (“objective function”)
Ω: domain (limited by constraints on accelerator parameters)

Example: injector
Minimizing emittance by tuning solenoids and accelerating cavities

Find xmin, such that ∀𝒙 ∈ 𝛺, 𝑓 𝒙!"# ≤ 𝑓(𝒙)

f = ✏?

xmin

f

x =

✓
Bsolenoid

Ecavity

◆



Efficient optimization
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Aim:

Motivation: evaluations of f are usually costly

• Design studies:
Evaluations of f require computationally
expensive numerical simulations

• Online tuning:
Evaluations of f take time on the machine
Parameters of the machine may drift if it 
takes too long to find the minimum.

Find xmin with few evaluations of f

xmin

f



Minimization vs maximization

Minimization:

Find xmin, such that ∀𝒙 ∈ 𝛺, 𝑓 𝒙!"# ≤ 𝑓(𝒙)
Maximization:

Find xmin, such that ∀𝒙 ∈ 𝛺, 𝑓 𝒙!"# ≥ 𝑓(𝒙)

In order to maximize a function f, one can simply pass the function –f 
to a minimization algorithm.

In the rest of this course, we will focus on minimization algorithms.



Naive algorithm: grid search
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Algorithm:
Systematically evaluate f at points 
separated by a fixed step in each direction.
At the end: find the best point among 
them.

Practical consideration:

• Takes a long time to even reach 
interesting regions.

• Scales badly with dimensionality!

• Does not use the information from 
previous evaluations of f to decide 
which point to evaluate next.

Animation 
(not converted to PDF;

see the recordings)



Naive algorithm: random search
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Algorithm:
Evaluate f at randomly chosen points.
At the end: find the best point among them.

Practical consideration:

• May evaluate points that are close to 
each other and do not bring significantly
more information

• Scales badly with dimensionality!

• Does not use the information from 
previous evaluations of f to decide which 
point to evaluate next.

Animation 
(not converted to PDF;

see the recordings)



Human intervention 

Algorithm:
A human being chooses the points to evaluate

Practically consideration

• Humans sometimes accumulate unique 
experience/knowledge of a given accelerator

• But: slow reaction time

• Biases, bad at dealing with more than 1 or 2 dimensions
(usually perform 1D search)

14
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Nelder-Mead simplex: algorithm
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• Choose N+1 arbitrary initial points
(where N is the dimension of the 
input x of the objective function f)
Evaluate f  at these points.

Note:
These points define a “simplex”.
(The points are the “vertices” of the simplex.)

- In 2D (N=2), a simplex is a triangle.
- In 3D (N=3), a simplex is a terahedron.

2D example: 3 initial points



Nelder-Mead simplex: algorithm
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• Choose N+1 arbitrary initial points
(where N is the dimension of the 
input x of the objective function f)
Evaluate f  at these points.

• Iteratively:
- Move vertices according to a

set of basic rules (see next slide)
- Evaluate objective function f 
at the new vertices

• These rules effectively result in the simplex moving towards the minimum.
The N+1 vertices allow to “feel” the direction in which to move 
(without calculating the gradient).

Animation 
(not converted to PDF;

see the recordings)



Nelder-Mead simplex: basic rules
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Pick	the	worse point
(i.e.	the	one	with	the	
highest	value	of	f)

Exact	algorithm	with	code:	Press	et	al.,	“Numerical	Recipes”



Nelder-Mead simplex: basic rules
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Pick	the	worst point
(i.e.	the	one	with	the	
highest	value	of	f)

Try	to	perform	a	reflection
through	the	barycenter	of	
the	other	points	;	
keep	the	new	point	if	the	
value	of	f	improved

Heuristic: try	to	move	away
from	the	high	values	of	f

Exact	algorithm	with	code:	Press	et	al.,	“Numerical	Recipes”



Nelder-Mead simplex: basic rules
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Pick	the	worst point
(i.e.	the	one	with	the	
highest	value	of	f)

Try	to	perform	a	reflection
through	the	barycenter	of	
the	other	points	;
keep	the	new	point	if	the	
value	of	f	improved

Did	it	become	the
best	point	of	the	
simplex?

Try	to	perform	a	dilation
in	the	same	direction	;	
keep	the	new	point	if	the	
value	of	f improved.	

Heuristic: accelerate in	the
the	direction	in	which	f	decreases

Exact	algorithm	with	code:	Press	et	al.,	“Numerical	Recipes”



Nelder-Mead simplex: basic rules

Simplex accelerating 
in the direction of decreasing f:

Animation 
(not converted to PDF;

see the recordings)



Nelder-Mead simplex: basic rules
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Pick	the	worst point
(i.e.	the	one	with	the	
highest	value	of	f)

Try	to	perform	a	reflection
through	the	barycenter	of	
the	other	points	;
keep	the	new	point	if	the	
value	of	f	improved

Try	to	perform	a	contraction
towards	the	barycenter	of	the
other	points	of	the	original	simplex.

Is	it	still	the	
worse	point	
of	the	simplex?

Did	it	become	the
best	point	of	the	
simplex?

Try	to	perform	a	dilation
in	the	same	direction	;	
keep	the	new	point	if	the	
value	of	f improved.	

Heuristic: squeeze	into
narrow	valleys	of	f

Exact	algorithm	with	code:	Press	et	al.,	“Numerical	Recipes”



Nelder-Mead simplex: basic rules

Squeeze into narrow valleys of f

Animation 
(not converted to PDF;

see the recordings)



Nelder-Mead simplex: basic rules
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Pick	the	worst point
(i.e.	the	one	with	the	
highest	value	of	f)

Try	to	perform	a	reflection
through	the	barycenter	of	
the	other	points	;
keep	the	new	point	if	the	
value	of	f	improved

Exact	algorithm	with	code:	Press	et	al.,	“Numerical	Recipes”

Try	to	perform	a	contraction
towards	the	barycenter	of	the
other	points	of	the	original	simplex.

Is	it	still	the	
worse	point	
of	the	simplex?

Did	it	become	the
best	point	of	the	
simplex?

Try	to	perform	a	dilation
in	the	same	direction	;	
keep	the	new	point	if	the	
value	of	f improved.	

Improvement?

Keep	the	new	point

No	improvement?

Try	to	perform	a	contraction
towards	the	best	point	of	the	
simplex

Heuristic: shrink	
into	a	trough	of	f



Nelder-Mead simplex: basic rules
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Pick	the	worst point
(i.e.	the	one	with	the	
highest	value	of	f)

Try	to	perform	a	reflection
through	the	barycenter	of	
the	other	points	;
keep	the	new	point	if	the	
value	of	f	improved

Exact	algorithm	with	code:	Press	et	al.,	“Numerical	Recipes”

Try	to	perform	a	contraction
towards	the	barycenter	of	the
other	points	of	the	original	simplex.

Is	it	still	the	
worse	point	
of	the	simplex?

Did	it	become	the
best	point	of	the	
simplex?

Try	to	perform	a	dilation
in	the	same	direction	;	
keep	the	new	point	if	the	
value	of	f improved.	

Improvement?

Keep	the	new	point

No	improvement?

Try	to	perform	a	contraction
towards	the	best	point	of	the	
simplex

+	Reiterate	until	convergence



How to use the Nelder-Mead simplex in Python
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from scipy.optimize import fmin



Nelder-Mead simplex: example
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I.	Agapov et	al.,	
“Automatic	tuning	of	Free	Electron	Lasers”	(2017)
https://arxiv.org/abs/1704.02335

Online optimization at the FLASH FEL (DESY):
Maximized FEL radiation (“sase” curve) with Nelder-Mead algorithm
by tuning two groups of beam optics elements (“Action 1” and ”Action 2”)

https://arxiv.org/abs/1704.02335


Nelder-Mead simplex: practical considerations

• Relatively robust

• Extensively used for online tuning of accelerators
Often considered as a baseline method in literature on optimization

• However, requires many evaluations of f compared to other methods

• Not very robust to noise

• No parallel evaluation (the algorithm is intrinsically sequential)

28
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Gradient-descent: algorithm
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• Calculate the local gradient of f

• Move in the opposite direction
(i.e. towards the minimum) 

𝛼: “step size” (optimization)

• Iterate

Note: Gradient-descent is also very common in the context of machine learning. 
In this case: f is the “loss function” (accuracy of the ML model), 𝛼 is the “learning rate”.
(See Wednesday’s lecture)

xn+1 = xn � ↵rf(xn) Animation 
(not converted to PDF;

see the recordings)



Gradient-descent: how to choose the step size 𝛼

Trade-off:
• If 𝛼 is too small: converges slowly (inefficient)
• If 𝛼 is too large: may not converge

Common methods to choose 𝜶:
• Fixed, small value (e.g. 𝛼 = 10!")
• Adaptive: e.g. Adagrad, RMSProp algorithms 

(often used in ML context: see next week’s lecture)

Step size too small:xn+1 = xn � ↵rf(xn)

Animation 
(not converted to PDF;

see the recordings)



Gradient-descent: how to choose the step size 𝛼

Trade-off:
• If 𝛼 is too small: converges slowly (inefficient)
• If 𝛼 is too large: may not converge

Common methods to choose 𝜶:
• Fixed, small value (e.g. 𝛼 = 10!")
• Adaptive: e.g. Adagrad, RMSProp algorithms 

(often used in ML context: see next week’s lecture)

Step size too large:
xn+1 = xn � ↵rf(xn)

Animation 
(not converted to PDF;

see the recordings)



Gradient-descent: how to calculate the gradient

Analytical calculation:
• Never possible if f is obtained from real-time measurements
• Sometimes possible when f is obtained from numerical simulations

(some programming frameworks can automatically track the derivatives of every 
single mathematical operation in the simulation, e.g. autograd)

• Often possible when f is the loss function of an ML model

Numerical differentiation:

with h small
• Requires many (expensive) evaluations of f
• Sensitive to any noise in f

for each input parameter 𝑥!
@f

@xi
⇡ f(xi + h)� f(xi)

h



Numerical differentiation: sensitivity to noise

Assume evaluations of f are noisy: f(x) = f̃(x) + ⌘

Noiseless part:
always gives the same
result, for a given x

Stochastic part:
value changes for 
each evaluation, 
with RMS 𝜎#

Numerical differentiation:

f(xi + h)� f(xi)

h
=

f̃(xi + h)� f̃(xi)

h
+

✓
⌘0 � ⌘

h

◆

⇡ @f̃

@xi
+

✓
⌘0 � ⌘

h

◆

Stochastic term,

with RMS 
"$!
%

For small h, numerical 
differentiation amplifies
the noise.



Gradient descent: the “valley problem”

Source: https://distill.pub/2017/momentum/

If the objective function f presents a long narrow valley, 
gradient-descent converges very slowly.

https://distill.pub/2017/momentum/


One possible solution: gradient descent with momentum

Gradient descent:

xn+1 = xn � ↵rf(xn) vn+1 = �vn �rf(xn)

xn+1 = xn + ↵vn+1

Gradient descent with momentum:

• For 𝛽 = 0: gradient descent with momentum reduces to regular gradient descent

• But for 𝛽 close to 1, 𝒗& effectively accumulates −𝜵𝑓 over past iterations

• Similar to a point moving under a force −𝜵𝑓, 
with a friction coefficient proportional to (1 − 𝛽)

0  � < 1



The “valley problem”

Source: https://distill.pub/2017/momentum/

No momentum:
(𝛽 = 0)

With momentum:
(𝛽 = 0.85)

https://distill.pub/2017/momentum/


Gradient descent: practical considerations

• Requires to carefully choose the step size ; issues with narrow valleys.
(unless one uses gradient descent with momentum)

• Requires a reliable way to evaluate gradient (e.g. analytically)

• Relatively rarely used for optimization of particle accelerators, 
at least for the standard version of gradient descent

• Widely used within machine learning algorithm to optimize the loss function

• No parallel evaluation (the algorithm is intrinsically sequential)

38



Outline

• Example and motivation for particle accelerators

• Optimization: general definition and naïve algorithms

• Some common optimization algorithms
• Nelder-Mead algorithm
• Gradient-descent
• Extremum Seeking

• Some general terms



Extremum seeking: introduction

• In simplex and gradient descent 
(with finite-difference derivative)
the direction in which to move is 
inferred by sampling neighboring points.

• In extremum seeking, neighboring points 
are sampled by performing small 
oscillations.

• The aim here is not to be efficient, but 
rather to be robust for real-time dynamic 
systems (e.g. operating accelerators, in 
real-time, with drifts)

Animation 
(not converted to PDF;

see the recordings)



Extremum seeking: algorithm

At each step, the coordinates of the point are updated with:

xi,n+1 = xi,n +�t
p
↵!i cos(!in�t+ kf(xn))

• 𝜔': real-time frequency of the oscillations
(needs to be different for each coordinate
for the method to work)

• ∆𝑡: real-time interval between evaluations

• 𝛼: controls the amplitude of the oscillations

• 𝑘: controls in which direction the average 
motion goes.

Animation 
(not converted to PDF;

see the recordings)



Extremum seeking: why does it work?

• The algorithm does not explicitly calculate the gradient (like gradient descent) or 
explicitly compare points (like simplex): how does it work?

• Note that the effective frequency of the oscillation is: 𝜔' + 𝑘
()
(*

If the point is at a phase where it is already moving towards a minimum, then ()(*<0, 
and the point will spend more time at this phase.
(similarities with ∇𝐵 drift for a charged particle gyrating in a non-uniform B field)

• Mathematically, it can be showed that the average motion satisfies

xi,n+1 = xi,n +�t
p
↵!i cos(!in�t+ kf(xn))

dhxi
dt

= �k↵

2
rf(hxi)



Extremum seeking: choosing parameters

xi,n+1 = xi,n +�t
p
↵!i cos(!in�t+ kf(xn))

• 𝜔': needs to be fast compared to the drifting 
motion (again, needs to be different for each i)

• ∆𝑡: needs to be small compared to 𝜔'

• 𝛼: can be reduced as we get close to the 
minimum, in order to reduce the amplitude of 
the oscillation motion.

dhxi
dt

= �k↵

2
rf(hxi)

Animation 
(not converted to PDF;

see the recordings)



Extremum seeking: example at the AWAKE electron beam line

Scheinker et al., “Online Multi-Objective Particle Accelerator Optimization
of the AWAKE Electron Beam Line for Simultaneous Emittance and Orbit Control” (2020)
https://arxiv.org/abs/2003.11155v1

Aim: maintain beam on a target trajectory
Objective function (f): distance of beam centroid to the target trajectory, as measured by BPMs
Tuning parameters (x): strength of 10 different steering magnets

https://arxiv.org/abs/2003.11155v1
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Optimization with constraints

Constraints directly on the input parameters:

e.g. minimize emittance by tuning steering 
magnets while ensuring that the current 
that controls steering magnet stays within 
a safe range.

Typical form: minimize 𝑓(𝒙) while ensuring
𝑥! ≤ 𝑥"#$for a given 𝑖 and 𝑥"#$

Easy to implement: simply restrict  the 
domain Ω over which the optimization 
is performed.

Constraints that depend on the input
parameters, but are difficult to predict
and need to be measured/simulated:

e.g. minimize energy spread by tuning 
beam optics, while ensuring that the 
beam loss stays below a given threshold

Typical form: minimize 𝑓(𝒙) while 
ensuring 𝑔 𝒙 ≤ 𝑔"#$

More difficult to implement: need a to 
learng a model that can predict 𝑔 and ensure 
that the optimization algorithm will not
access unsafe parameters



Derivative-based vs. derivative-free optimization algorithm

Derivative-based algorithm

The algorithm requires a way to evaluate 
the derivative of f.

Derivative-free algorithm

The algorithm does not need to evaluate 
the derivative (only evaluates f itself).

Examples:
• Gradient-descent

Examples:
• Nelder-Mead
• Extremum Seeking



Parallelizable vs. sequential optimization algorithm

Parallelizable algorithm

Evaluations of f are (at least partially) 
independent and can be carried out in 
parallel.

Sequential algorithm

The point at which f is evaluated depends
on the results of all past evaluations.
Evaluations of f have to be carried out 
sequentially.

Examples:
• Nelder-Mead
• Gradient-descent
• (Extremum Seeking)

Examples:
• Random search
• Grid search

Important for simulation-based design studies:
Parallel optimization algorithms allow independent simulations to 
be carried out on separate computational resources.



Local vs. global optimization algorithm

Global algorithm

Attempts to find the global 
minimum, even in the presence of 
local minima.

Local algorithm

Is likely to get “stuck” in local 
minima. 

Examples:
• Nelder-Mead
• Gradient-descent
• Extremum Seeking

Examples:
• Random search
• Grid search



Single-objective vs. Multi-objective optimization

Single-objective

Finds the minimum of a single scalar
function.

Multi-objective

Simultaneously optimize several
(potentially conflicting) functions ;
find the optimal trade-off

Examples:
• Nelder-Mead
• Gradient-descent
• Extremum Seeking

See tomorrow’s lecture



Thanks for your attention.

Feel free to ask questions!


