

Optimization and Machine Learning for Particle Accelerators: organization of the course

Presenter: R. Lehe

Day 1

Instructors:

Auralee Edelen (SLAC)

Graders:

Adi Hanuka (prev. SLAC, now Eikon Therapeutics)

Jorge Diaz Cruz (U. New Mexico)

Remi Lehe (LBNL)

Christopher Mayes (SLAC)

Ryan Roussel (U. Chicago)

Mauricio Ayllon Unzueta (U.C. Berkeley)

Course website

Course website: <u>https://slaclab.github.io/USPAS_ML</u>

- Gathers resources for the course:
 - Agenda
 - Lecture slides (posted just before each lecture)
 - Lecture recordings (posted after each lecture)
 - Lab solutions (posted after corresponding labs)
 - Slack workspace

\equiv Optimization and Machine Learning for Accelerators (USPAS 2021) Q

Overview

This page gathers the class material for the 2021 U.S. Particle Accelerator School course on Optimization and Machine Learning for Accelerators.

Agenda

Download

Lecture slides and recordings

- Introduction slides
- Optimization 1: Introduction and local methods
- Optimization 2: More advanced methods
- Introduction to machine learning slides
- Gaussian processes

Agenda

Monday June 28	Tuesday June 29	Wednesday June 30	Thursday July 1	Friday July 2
Return homework		Return homework		Return homework
from lab 5		from lab 6		from lab 8
Lecture 6:	Lecture 7:	Lecture 8:	Lecture 9:	Exam
Modern neural	Uncertainty	Unsupervised	Reinforcement	
networks	quantification	learning	learning	
Lab 6	Lab 7	Lab 8	Lab 9	
Break	Break	Break	Break	Break
				Lecture 10:
Lab 6	Lab 7	Lab 8	Lab 9	Current challenges
Homework		Homework		
from lab 6		from lab 8		

Connect to Zoom during the colored areas of the planning (see Google Calendar invitations)

- Labs, homework and exam are in Jupyter notebook format.
- We will use Radiasoft's cloud platform "Sirepo" (www.sirepo.com/jupyter) to:
 - Run the labs in a controlled environment
 - Gather the returned homework
- When connecting to Sirepo for the first time: use the email address that you provided to USPAS
- Blue questions: done live, during lab sessions
 Green questions: homework

Note: When using Sirepo: no GPU access. For (free) GPU resources, you can run the notebooks on <u>https://colab.research.google.com/</u> after this course. (Not supported during this course.)

- Homework and final exam will be graded.
 Overall grade = 60% homework + 40% exam
- Need A or B to pass this course and get academic credits
- When done with your homework/exam, copy your notebook to the folder that corresponds to your email address, within the USPAS-Student folder, on www.sirepo.com/jupyter
- Audit students: no need to return homework or participate in exam.

- Lectures, labs and exam will take place through Zoom.
 Lectures will be recorded and later posted to the website.
- Having cameras on is encouraged! Mute unless you are specifically asked to unmute (e.g. for questions)
- Feel free to ask questions at any time during lab/lecture! by either:
 - Raising your hand in Zoom
 - Or typing the question in the chat

Someone will be monitoring the chat/raised hand and will warn the speaker.

- For questions outside of the lab/lecture sessions, use Slack (next slide)
- Reminder: do not post Zoom link publicly ; link is only for registered students.

- Our slack workspace: uspas-ml.slack.com
- You should have been invited last week.
 If not: let us know **now** via Zoom chat (along with your email address)!
- Purpose:
 - interaction outside of lecture/lab hours
 - any questions (on course content or organization)
 - one-on-one help (esp. debugging your environment)
 - sharing interesting resources, etc.

Any question at this point?