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AI Safety

Safe / constrained optimization applied in cases that are not really safety-critical

• Explore while avoiding simply undesirable of beam parameter space → faster tuning

• Avoiding regions a human wouldn’t go to or by better juggling various needs

• Faster/better tuning = more scientific output per dollar spent in operation

Damage to Instruments 

• Radiation, heat, rf power, high power beams, etc. can damage components 

• Can be very expensive (multiple millions of dollars) for a single component

• Can be indirect: e.g. a hole in a beam pipe can cause huge loss of time due to need to 
patch/replace and pump back down to vaccuum → can also damage other equipment

• Machine protection system is not guaranteed to help (many examples where issues due to 
human error aren’t caught by MPS → e.g. manual steering into beam pipe, not seeing sparking 
pattern during rf conditioning)

Human Safety

• Accidents could have severe consequences in some cases (if future MPS systems use ML, it 
needs to be robust)

• Industrial/medical applications: proton therapy, x-ray therapy, accelerator-driven reactors

lower-consequence

higher-consequence

Major area of open research in AI/ML more broadly  → some good techniques already well-established for accelerators

pulse energy drops 
→ angry users!

high beam losses 
→ radiation damage!

J. Kirschner et al., ICML (2019)

https://accelconf.web.cern.ch/IP
AC10/papers/wepeb075.pdf

beam halo

proton therapy 
machine at 
Children’s Hospital 
of Philadelphia



Uncertainties and Time-Varying Behavior

Major assumption in ML: i.i.d. (independent and identically distributed) distributions

→ How to handle out-of-distribution data and drift?  (major research question in AI/ML community)

Accelerators are changing all the time
• Deliberate changes in state (e.g. new beam configurations)

• Unplanned changes in state (e.g. equipment failure)

• Drift (e.g. temperature/equipment), e.g. ion sources  + cathodes can change responses over months

• Equipment changes + part replacement  over time, not just “one accelerator”

Need accurate (calibrated!) uncertainty estimates + redundancy (e.g. multiple models + control methods)

Need to be able to handle out-of-distribution samples and drift over time
• Identify when model is no longer accurate (e.g. can monitor accuracy + estimated uncertainty, look at ranges of inputs to see if beyond 

training data, etc.)

• Need good / robust procedures for re-training  or re-calibration  (many promising options but not well-explored)

• Switch between methods inherently better for new regimes (e.g. handoff between data-hungry ML methods and ones better-suited for 
efficient exploration)

• Automation of all this is a major challenge

Uncertainty estimates don’t always cover full error
In this case: substantial drift in several inputs to OOD 



Data Cleaning + Data Tagging

We have a lot of data, but we need to be able to make use of it! 
GIGO

• Many variables → which to use? “include them all” can backfire

• Changing conditions (e.g. different machine states, some of 
which are sub-optimal or have different metrics)

• Not all variables are logged (often added over time) or capable 
of being logged

• Different archives with different timing systems (e.g. sometimes 
not even a centralized clock)

Disparate sources of info
• E-log for machine, e-log for maintenance

• The data itself

• Unlogged information → e.g. hardware change details, 
calibration changes not always logged (especially during 
commissioning)

ML can help but should probably not be relied upon exclusively
• Anomaly detection

• Feature selection

• NLP for the logbook??? ☺ 

hundreds of possible inputs
 → many operating modes + changes to machine!

e-log entry



Legacy Software and Hardware

Data recording rate (and machine rep rate) + storage capabilities
Matters a lot for data collection + feedback! (think about 120Hz vs. 1Hz data)
e.g. upgrade cameras 1 Hz to 10 Hz → could require change of hardware!
e.g. RF waveform data → MHz rate, difficult to store all data!

Some accelerators are very old!
Expensive to build + construction takes a long time 
→ not using cutting-edge for data acquisition/storage/compute at build time

e.g. Fermilab Tevatron
- Started  construction in 1968; operational 1987 – 2011
- Some components originally for Tevatron are still used

e.g. LCLS  began operation in 2009
-  Both LCLS and FACET-II use some components from an older accelerator at SLAC 

(e.g. RF cavities)

Compute resources + controls network 
Old infrastructure + bandwidth between HPC compute resources and accelerator

Often have safety restrictions on entering/exiting controls network

Flexibility to change varies between facilities 
High-demand user program → risk/reward favors being conservative about change

New accelerators (e.g. CLARA at Daresbury) inherently trying to support ML/AI data 
acquisition and storage needs in control system and data acquisition design

(compute + data acquisition + accelerator components)

FACET-II
accelerator 

LCLS
accelerator 



Software Development Practices

All-too-common situation in accelerators: un-tracked code / lattices etc sent over email, copied into folders, local changes 

→ development nightmare

Essential for stable development to track changes to code → github etc!

• Useful even if not working on community code (e.g. what changes did I make 6 months ago?) →  important for reproducibility 

• Many journals now require data or code to be available

• Some resources  exist for publishing data sets

Need for community software and open-source code development 

• Open-source code and data sets are what helped ML/AI research take off →  we can improve how we do this in accelerators

• Also benefits to sharing data → standard ML test problems in accelerators

Reinventing the wheel often wastes resources

• Sometimes starting from scratch is needed (e.g. too old or convoluted code base, new needs to meet) → not talking about those cases

• Easy to reinvent the wheel accidently if not communicating

• Biggest challenges for community code: different design philosophy + different points of focus / needs + organizational barriers  

Even small-scale code sharing and using repositories for individually-developed projects is helpful to accelerate progress and ensure reproducibility



Combining Physics + ML

We have good physics models

→ should not discard all that info!

→ adding physics info can improve 
generalization and sample-efficiency in 
learning (need less data)

Various ways to combine theory + sim 
with measured data:

• Calibrated physics models

• Calibrated ML models

• Adding physics info to cost 
function 

• Inductive biases

• Physics-based priors

→ Saw examples of some of these 
in the class

Open area of research in ML more 
generally

With model calibration

More efficient online optimization with Bayesian 
optimization and physics-informed ML

J. Duris, et al, PRL 124, 124801 (2020)
A. Hanuka, et al, PRAB 24, 072802 (2021) A. Scheinker, S. Gessner, PRAB 18, 102801 (2015)

Adaptively tuned physics model

Andrei Ivanov, et al.,  PRAB 23, 074601 (2020)

Included physics structure (e.g. Lie map) 
+ autodiff for calibration

Constrained calibration of standard neural network



History of Neural Networks and “AI winters”

• 1950s - 1960s: reasoning, search etc

• 1970s: AI winter

• 1980s: “connectionism” i.e. neural 
networks, knowledge 
representation

• 1990s: AI winter

• 1997: Deep Blue beats Gary 
Kasparov in chess

• 2006: Deep learning breakthroughs 
at University of Toronto

• 2011: IBM Watson wins Jeapordy

• 2015: Deep learning on GPUs

• 2016: Alpha-Go deep learning 
software beats best players



History of AI/ML in Particle Accelerators

Excitement about new areas is good, but it can backfire due to hype

ML for accelerators had brief popularity in the 1990s then died out again
 

           e.g. can see in publication history for in accelerators (not exhaustive):

Early 1990s → excitement + a lot of early studies with mixed results, then mostly 
abandoned

2008 – 2010 → NN studies at LCLS and Australian Synchrotron 

2015 – 2017 → NN studies at Fermilab, Bayesian optimization and RL at SLAC (+DESY)

2018 → First ICFA ML workshop on ML for particle accelerators →  international 
community that was starting to work on AI/ML came together to discuss opportunities and 
challenges, resulting in a community white paper: https://arxiv.org/pdf/1811.03172.pdf 

2018 onward → several publications each year (and growing)

• Mid 1990s - appx. 2017 accelerator field was generally very skeptical of ML 

• 2017 was a major turning point as attitudes started to shift quickly

           →  2019 DOE started getting ready for major funding initiative

• Great news, but also reason for caution: 

- First-hand accounts of people working in AI in the 80s and 90s describe how backlash 
after hype and aggressive funding drove the previous AI winter 
→ opportunity for us to learn from this

- Bringing solutions into regular operation in addition to doing cutting edge AI/ML R&D 
might help avoid the same issues

2018 - First ICFA workshop on ML for Particle Accelerators

just glanced through quickly based on an old 
literature search from 2016 and filling in more 
recent ones from memory, so there may be some 
early ones missing, and the full count from 2018 is 
higher

could re-do more comprehensively/carefully

https://arxiv.org/pdf/1811.03172.pdf


Future Needs and Directions for ML/AI in Accelerators

Investments for Open Technical Challenges  

Uncertainty quantification
- Detect when model may not be accurate (e.g. outside training range)

- Leverage for safe exploration of parameter space

Active learning
- Retraining to account for drift or adapt during search 

- Sampling strategies to efficiently explore large parameter space + generate training 

data (maximize information with the least samples)

Efficient ways to handle high dimensional data:  
- Images, point cloud, etc

- More variables (full accelerator vs. small test cases)

Physics-informed / constrained ML
- Improve robustness / generalization to unseen regions of parameter space

- Reduce need for additional data

- Extract physics from measured data

Interpretability
- Important for ML-based tuning, anomaly detection, modeling 

Many shared challenges with other SciML domains

Investment in Shared Infrastructure 
- Common data format standards (e.g. OpenPMD)

- Open software infrastructure for automation (e.g. Ocelot, xopt)

- Library of benchmark datasets + solutions

Cross-Communication and Coordination
- Tighter coupling between accelerator theorists and those doing ML

- Tighter integration with broader physics/ML community (e.g. those 

in particle / plasma physics doing ML)

- Collaboration between facilities

- Many shared challenges and similar problem structures for ML in 

accelerators

- ML solutions can be readily transferred between facilities

- Need funding structures that better facilitate or directly encourage 

cross-collaboration

- e.g. FACET-II / LCLS Cu very similar designs / needs with  respect to 

ML-based tuning 



laser
profile

automated control
 + optimization

digital twins + online modeling
(fast sims, autodiff sims, model calibration)

advanced diagnostics
(reconstruct / analyze beam)

anomaly detection 
 failure prediction

incorporate 
physics

information

extract unexpected
relationships

(feed into control / design)

J. Duris

C. Emma

+ need UQ for all

All applications will be tied together in the end for operations 
→ need resources and robust approaches to do this


